

EXAMINATION PAPER

Examination Session:	Year:		Exam Code:			
May/June	2021		M	MATH41620-WE01		
Title: Number Theory						
	_					
Time (for guidance only)	: 3 hours	3 hours				
Additional Material provi	ded:					
Materials Permitted:						
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.				
Instructions to Candidate		Credit will be given for your answers to all questions. All questions carry the same marks.				
	Please start e	Please start each question on a new page.				
	Please write	Please write your CIS username at the top of each page.				
		To receive credit, your answers must show your working and explain your reasoning.				
	ı			Revision:		

- Q1 Let p be a prime integer. In the following we make the convention that for a p-adic expansion $\sum_{n=m}^{\infty} a_n p^n \in \mathbb{Q}_p$ with $m \in \mathbb{Z}$, we select $a_n \in \{0, 1 ..., p-1\}$.
 - **1.1** Assume that $a \in \mathbb{Q}_p$ has p-adic expansion $\sum_{n=-m}^{\infty} c_n p^n$ for some $m \in \mathbb{N}$. Give the p-adic expansion of -a in terms of the c_n 's. Justify your answer.
 - **1.2** (i) Let $0 \neq a = p^k \sum_{n=0}^{\infty} a_n p^n \in \mathbb{Q}_p$, with $k \in \mathbb{Z}$, and write $a^{-1} = p^{-k} \sum_{n=0}^{\infty} b_n p^n$. Show that for any $m \in \mathbb{N}$, the numbers b_0, b_1, \dots, b_m can be determined by a_0, a_1, \dots, a_m .
 - (ii) Show that $\frac{1}{7} \in \mathbb{Z}_5$. Further, if we write $\frac{1}{7} = \sum_{n=0}^{\infty} a_n 5^n$ then determine $a_0, a_1, a_2, a_3 \in \{0, 1, 2, 3, 4\}$. Show your working.
 - **1.3** Assume that $a \in \mathbb{Q}_p$ is of the form $a = p^{2n-1}b$ with $b \in \mathbb{Z}_p^{\times}$ for some $n \in \mathbb{N}$. Is $\sqrt{a} \in \mathbb{Q}_p$? Justify your answer.
 - **1.4** (i) Let $a \in \mathbb{Z}_p$ and write $b := a^{p-1}$. Show that $a \in \mathbb{Z}_p^{\times}$ if and only if $\sqrt[n]{b} \in \mathbb{Z}_p$ for infinitely many $n \in \mathbb{N}$.
 - (ii) Show that the only field automorphism of \mathbb{Q}_p is the identity.

- **Q2 2.1** Let $f(x) = x^n + a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + ... + a_1x + a_0 \in \mathbb{Z}[x]$. Let p be a prime factor of a_0 and write $r \in \mathbb{N}$ such that p^r divides a_0 and p^{r+1} does not. Assume further that all a_i for i = 1, ..., n-1 are divisible by p^r and that the polynomial f(x) is irreducible over \mathbb{Q} . Denote by R the ring of integers of $\mathbb{Q}(\alpha)$, where $\alpha \in \mathbb{C}$ such that $f(\alpha) = 0$. Show that:
 - (i) There is an ideal I in R such that $(p^r)_R = I^n$.
 - (ii) If r and n are relatively prime then there exists an ideal J in R such that $(p)_R = J^n$.
 - **2.2** Let K be a number field and write \mathcal{O}_K for its ring of integers.
 - (i) Let I be a non-zero proper ideal in \mathcal{O}_K . Show that there exists an element $\gamma \in K$ such that $\gamma \notin \mathcal{O}_K$ and $(\gamma)_B I \subset \mathcal{O}_K$.
 - (ii) Let F be a finite extension of K and write \mathcal{O}_F for the ring of integers of F. Let I be a proper ideal of \mathcal{O}_K , and consider the set

$$\mathfrak{I} := \left\{ \sum_{i=1}^n a_i r_i \mid n \in \mathbb{N}, a_i \in I, r_i \in \mathcal{O}_F \right\}.$$

- A. Show that \Im is an ideal in \mathcal{O}_F .
- B. Show that $\Im \neq \mathcal{O}_F$.
- C. Show that we may select F such that \Im is a principal ideal in \mathcal{O}_F .
- **Q3 3.1** Let $i \in \mathbb{C}$ with $i^2 = -1$. Is the ring $\mathbb{Z}[2i] := \{a + 2bi \mid a, b \in \mathbb{Z}\}$ a UFD? Justify your answer.
 - **3.2** Let d be a square-free integer with $d \equiv 1 \pmod{4}$. Write $K = \mathbb{Q}(\sqrt{d})$, and denote by R the ring of integers of K. For p an odd prime, show that if $(p)_{\mathbb{Z}}$ is not inert in K, then there exists an integer b with $0 \le b \le p-1$ such that p divides $N_{K/\mathbb{Q}}(b+\frac{1+\sqrt{d}}{2})$.
 - **3.3** Let $K = \mathbb{Q}(\sqrt{-65})$, and write R for its ring of integers. Factorise the ideal $(75 15\sqrt{-65}, -195 15\sqrt{-65})_R$ into a product of prime ideals in R.

- **Q4** Let $K = \mathbb{Q}(\sqrt{7}, \sqrt{10})$ and fix any $\alpha \in \mathcal{O}_K$ such that $K = \mathbb{Q}(\alpha)$. Let $f(x) \in \mathbb{Z}[x]$ be the irreducible monic polynomial for which $f(\alpha) = 0$. Throughout this question, given a polynomial $g(x) \in \mathbb{Z}[x]$ let $\overline{g}(x)$ denote the reduction of this polynomial modulo 3. Namely, $\overline{g}(x) \in (\mathbb{Z}/3)[x]$.
 - **4.1** Compute $N_K(\sqrt{7})$ and $\text{Tr}_K(\sqrt{7})$.
 - **4.2** Show that $g(\alpha)$ is divisible by 3 in $\mathbb{Z}[\alpha]$ if and only if $\overline{f}(x) \mid \overline{g}(x)$ in $(\mathbb{Z}/3)[x]$. You may use here that the ring $\mathbb{Z}[\alpha]$ is isomorphic to the ring $\mathbb{Z}[x]/(f(x))_{\mathbb{Z}[x]}$ via the evaluation at α map.
 - 4.3 Let

$$\alpha_1 = (1 + \sqrt{7})(1 + \sqrt{10})$$

$$\alpha_2 = (1 + \sqrt{7})(1 - \sqrt{10})$$

$$\alpha_3 = (1 - \sqrt{7})(1 + \sqrt{10})$$

$$\alpha_4 = (1 - \sqrt{7})(1 - \sqrt{10}),$$

be in \mathcal{O}_K . Prove that $3 \mid \alpha_i \alpha_j$ for any $i \neq j$, but 3 does not divide any power of α_i^n for any i = 1, 2, 3, 4 and any $n \geq 1$.

(Hint: $\alpha_1, ..., \alpha_4$ are related to each other in a special way. Can you spot this relation and use it to compute traces?)

- **4.4** Let $\alpha_1, ..., \alpha_4$ be as defined above in Question 4.3. Suppose $\alpha_i \in \mathbb{Z}[\alpha]$ for each i = 1, ..., 4, then we must have $\alpha_i = f_i(\alpha)$ for some polynomials $f_i(x) \in \mathbb{Z}[x]$. Show that $\overline{f}(x) \mid \overline{f}_i(x)\overline{f}_j(x)$ for $i \neq j$ but $\overline{f}(x)$ does not divide $\overline{f}_i(x)^n$ in $(\mathbb{Z}/3)[x]$, for any i = 1, 2, 3, 4 and any $n \geq 1$.
- **4.5** Conclude that $\bar{f}(x)$ has at least four distinct monic irreducible factors in $(\mathbb{Z}/3)[x]$ and use it to prove that $\mathcal{O}_K \neq \mathbb{Z}[\alpha]$ for any $\alpha \in \mathcal{O}_K$. Give careful reasoning. (Hint: Recall that $(\mathbb{Z}/3)[x]$ is a UFD.)
- **Q5 5.1** Compute the group structure of the class group of $K = \mathbb{Q}(\sqrt{-33})$. Give careful reasoning.
 - **5.2** Let $K = \mathbb{Q}(\alpha)$ and $R = \mathcal{O}_K = \mathbb{Z}[\alpha]$, where $\alpha^3 = \alpha + 1$. Factorise the ideal $(345)_B$, as a product of prime ideals in R.
 - **5.3** Let p be a prime such that $p \equiv 3 \mod 4$. Assume further that the class group of the field $K = \mathbb{Q}(\sqrt{p})$ is of odd order. Use this information to prove that there are infinitely many integers $a, b \in \mathbb{Z}$ satisfying

$$a^2 - pb^2 = (-1)^{(p+1)/4}2.$$