

EXAMINATION PAPER

Examination Session:	Year:		Exam Code:				
May/June	2021	2021		MATH4181-WE01			
			_				
Title:							
Mathematical Finance IV							
Time (for guidance only): 3 hours	3 hours					
Additional Material prov	rided:						
Materials Permitted:							
		T					
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.					
Instructions to Candidates: Credit will be given for your answers to all questions.							
All questions carry the same marks.							
		Please start each question on a new page.					
	Please write	Please write your CIS username at the top of each page.					
To receive credit, your answers must show y					t show vour	working and	
explain your reasoning.							
	'				Revision:		

Q1 Let $S_t^{r,\sigma} = e^{(r-\frac{1}{2}\sigma^2)t+\sigma W_t}$ be geometric Brownian motion. Consider a contingent claim $F(S_T^{r,\sigma})$ for which we want to estimate the expectation

$$\Pi_T = \mathbb{E}[F(S_T^{r,\sigma})] = \mathbb{E}\left[F(e^{(r-\frac{1}{2}\sigma^2)T + \sigma W_T})\right]$$

by using a Monte-Carlo method.

- 1.1 Provide an unbiased estimator a_M of Π_T that uses M independent samples from a standard Normal distribution. Then provide an unbiased estimator b_M^2 for the variance of Π_T . Explain, by appealing to appropriate theorem(s), why a_M and b_M^2 are estimators for the mean and variance of Π_T , respectively.
- 1.2 Provide an approximate 95% confidence interval for Π_T that uses the estimators from part 1.1. Justify your answer by appealing to an appropriate theorem.
- 1.3 Provide a Monte-Carlo algorithm that estimates Π_T to within an approximate 95% confidence interval.
- 1.4 Suppose it is known in advance that

$$|F(s)| \le 1/2$$
 for every s.

Prove that the width of the approximate confidence interval from part 1.2 is at most $10/\sqrt{M}$ (assume that $M \ge 2$). How can you use this to get an estimate of Π_T that is accurate to within two decimal places with 95% confidence?

Q2 Consider a market consisting of two periods t = 0 and T, a stock S_t and interest compounded continuously at rate r. Assume the market has no arbitrage. There are two contingent claims X and Y as follows.

Claim X: At time t = T the holder of the claim has the right, but not the obligation, to buy 1 unit of the stock for a strike price K. If the holder does not exercise the option to buy the stock, then the holder has to pay a penalty of price J.

Claim Y: At time t = T the holder of the claim has the right, but not the obligation, to sell 1 unit of the stock for a strike price K. If the holder does not exercise the option to sell the stock, then the holder instead gains an amount J.

- **2.1** Show, with proper explanation, that the value of X at time T is $\max\{S_T K, -J\}$ and the value of Y at time T is $\max\{K S_T, J\}$.
- **2.2** Let C be the price of X at t = 0 and P be the price of Y at t = 0. Prove that $P + S_0 = C + (K + J)e^{-rT}$.
- **2.3** Prove or disprove whether the following inequalities hold for every value of J and K:

(i)
$$P \le S_0$$
; (ii) $C \le S_0$.

You must explain your reasoning.

Q3 Consider a market $\mathcal{M} = (B_t, S_t)$ consisting of a bond and a stock as follows for t = 0, T.

$$B_0 = 1, \quad B_T = 4/3.$$

$$S_0 = 10, \quad S_T = \begin{cases} 20 & \text{with probability } 1/3, \\ 15 & \text{with probability } 1/3, \\ 5 & \text{with probability } 1/3. \end{cases}$$

A portfolio in this market is a vector $h = (x, y) \in \mathbb{R}^2$. The value of the portfolio h is $V_t^h = xB_t + yS_t$ for t = 0, T.

- **3.1** The market contains arbitrage if there is a non-zero portfolio h such that $V_0^h = 0$, $V_T^h \ge 0$ with probability 1 and $V_T^h > 0$ with positive probability. Prove that this market contains no arbitrage.
- **3.2** A portfolio h is replicating for a contingent claim X if $V_T^h = X$ almost surely. Consider the following two contingent claims X_1 and X_2 .

$$X_1 = \begin{cases} 12 & \text{if } S_T = 20\\ 10 & \text{if } S_T = 15\\ 6 & \text{if } S_T = 5 \end{cases} \qquad X_2 = \begin{cases} 8 & \text{if } S_T = 20\\ 3 & \text{if } S_T = 15\\ 1 & \text{if } S_T = 5 \end{cases}$$

For each of X_1 and X_2 , either find a replicating portfolio or prove that none exists. Show your work neatly.

- **3.3** Consider the contingent claim X_1 from part **3.2**. Find the arbitrage-free price of X_1 . Justify your answer.
- **3.4** A martingale measure for this market is a change of measure \mathbb{Q} on the stock S_T such that under \mathbb{Q} the following identity holds:

$$\frac{1}{B_T} \mathbb{E}_{\mathbb{Q}}[S_T] = S_0.$$

Find, with proper justification, all martingale measures in this market.

Q4 Suppose that $(X_t, t \ge 0)$ is an Itô process with $X_0 = x_0 > 0$, $X_t \ge 0$ for all $t \ge 0$, satisfying the stochastic differential equation (SDE)

$$dX_t = \left[2\sqrt{X_t} - \mu X_t + \sigma^2\right] dt + 2\sigma\sqrt{X_t}dW_t, \quad t \ge 0,$$

where $(W_t, t \ge 0)$ is a Brownian motion and $\mu \in \mathbb{R}$ and $\sigma > 0$ are constants.

- **4.1** For $\alpha \in \mathbb{R}$, let $Y_t = e^{\mu t/2} X_t^{\alpha}$. Derive an SDE for Y_t (you may leave the right-hand side in terms of X_t). There is a special value $\alpha = \alpha_{\star}$ for which the drift in the SDE for Y_t is deterministic. What is α_{\star} ?
- **4.2** Solve the SDE for Y_t that you obtained in question **4.1** in the special case $\alpha = \alpha_{\star}$. Hence find an expression for $X_t^{\alpha_{\star}}$.
- **4.3** Calculate $\mathbb{E}(X_t^{\alpha_{\star}})$ and \mathbb{V} ar $(X_t^{\alpha_{\star}})$. Carefully justify your calculations.
- **4.4** Find $\lim_{t\to\infty} \mathbb{E}(X_t)$; you should consider the cases $\mu < 0$, $\mu = 0$, and $\mu > 0$.

Q5 Consider the continuous-time Black-Scholes market, with price dynamics given by

$$dB_t = rB_t dt, \qquad dS_t = \mu S_t dt + \sigma S_t dW_t,$$

where r > 0 is the risk-free interest rate, μ and σ are constant parameters, and $(W_t, t \ge 0)$ is a Brownian motion under the real-world measure \mathbb{P} .

A contingent claim X_T with expiry time T and threshold K > 0 is given by

$$X_T = \mathbb{1}\left\{\max_{0 \le t \le T} S_t \ge K\right\}.$$

5.1 Show that the arbitrage-free price $\Pi_0(X_T)$ at time 0 of X_T can be expressed in terms of an expectation under the risk-neutral measure \mathbb{Q} satisfying

$$\mathbb{E}_{\mathbb{Q}}[X_T] = H(T, \alpha, y),$$

where α, y are functions of S_0, K, σ , and r, and

$$H(T, \alpha, y) = \mathbb{P}\left(\max_{0 \le t \le T} (\alpha t + W_t) \ge y\right). \tag{1}$$

5.2 By considering a change of measure under which $(\alpha t + W_t, t \ge 0)$ is a Brownian motion, show that the probability in (1) can be written in terms of

$$\mathbb{E}_{\mathbb{P}}\left[e^{\alpha W_T} \mathbb{1}\{M_T \ge y\}\right], \text{ where } M_T := \max_{0 \le t \le T} W_t. \tag{2}$$

Give a careful explanation of the application of any theorem from lectures that you use.

5.3 Take T = 1. It can be shown that the joint distribution of W_1 and M_1 is given by

$$\mathbb{P}(M_1 \ge y, W_1 \in [x, x + \mathrm{d}x]) = \begin{cases} \phi(x) \, \mathrm{d}x & \text{if } x \ge y, \\ \phi(2y - x) \, \mathrm{d}x & \text{if } x < y, \end{cases}$$
(3)

where ϕ is the standard normal density function. Use (3) to compute (2) and hence determine $\Pi_0(X_1)$. Your answer may be written in terms of N(x), the cumulative distribution function of the standard normal distribution.

5.4 Give a brief explanation of the origin of formula (3).