

EXAMINATION PAPER

Examination Session: May/June

2021

Year:

Exam Code:

MATH41820-WE01

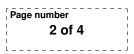
Title:

Fluid Mechanics

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers All questions carry the same marks.	to all questic	ons.
	Please start each question on a new	page.	
	Please write your CIS username at the	ne top of ead	ch page.
	To receive credit, your answers mus explain your reasoning.	t show your	working and
			1

Revision:



Q1 1.1 Starting from Faraday's law $\frac{\partial B}{\partial t} = -\nabla \times \mathbf{E}$, Ampère's law $\mu_0 \mathbf{J} = \nabla \times \mathbf{B}$, and Ohm's law $\mathbf{J} = \sigma(\mathbf{E} + \mathbf{u} \times \mathbf{B})$, with σ constant, derive the MHD induction equation

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{u} \times \boldsymbol{B}) + \eta \Delta \boldsymbol{B}$$

Exam code

MATH41820-WE01

and write down η in terms of the other constants.

1.2 If **A** is a vector potential satisfying $\boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A}$, show that

$$\frac{\partial \boldsymbol{A}}{\partial t} = \boldsymbol{u} \times \boldsymbol{B} - \frac{1}{\sigma} \mathbf{J} + \boldsymbol{\nabla} \boldsymbol{\phi}$$

for an arbitrary scalar function $\phi(\mathbf{x}, t)$.

1.3 Now consider the magnetic helicity in a fixed spherical volume V, defined by

$$K = \int_V \boldsymbol{A} \quad \boldsymbol{B} dV.$$

Show that

$$\frac{dK}{dt} = 2\int_{V} \boldsymbol{B} \cdot \frac{\partial \boldsymbol{A}}{\partial t} dV - \oint_{\partial V} \boldsymbol{A} \times \frac{\partial \boldsymbol{A}}{\partial t} \cdot d\boldsymbol{S}$$

1.4 If on the boundary ∂V , $\boldsymbol{u} = \boldsymbol{B}$ and $\boldsymbol{u} \cdot \boldsymbol{n} = 0$, show further that

$$\frac{dK}{dt} = -\frac{2}{\sigma} \int_{V} \mathbf{J} \cdot \mathbf{B} dV + \frac{1}{\sigma} \oint_{\partial V} \mathbf{A} \times \mathbf{J} \cdot d\mathbf{S}.$$

Q2 Consider a two dimensional incompressible, inviscid flow u(x, y, t) with zero body force. The vorticity of this flow at t = 0 is given by

$$\boldsymbol{\omega} = 2\pi k \delta(\boldsymbol{x} - \boldsymbol{x}_0) \delta(\boldsymbol{y} - \boldsymbol{y}_0) \boldsymbol{e}_z,$$

where $x_0, y_0 > 0$.

- **2.1** Write down (without proof) a steady flow u(x, y) with this vorticity in an infinite domain where $|u| \rightarrow 0$ at infinity.
- **2.2** Two walls are introduced at x = 0 and y = 0. Find the flow in the semiinfinite domain ($0 < x < \infty$, $0 < y < \infty$), and confirm your answer satisfies appropriate boundary conditions.
- **2.3** Assume now that initially $y_0 \gg x_0$. By considering the fluid motion at (x_0, y_0) , describe how the line vortex moves relative to the walls.
- **2.4** Does the strength of the line vortex change in time as it moves? Explain your answer.
- **2.5** Assume instead that $x_0 = y_0 = a$ and both walls are still present. Could a flow be constructed such that the line vortex remains stationary? If so, find such a flow solution.

Page number				
L	2 of 4	1		
L	3 of 4	1		
Ľ		1		
L		_ 」		

- **Q3** Consider a flow which is parallel and uniformly proportional to its vorticity, i.e. a flow with $\boldsymbol{\omega} = \lambda \boldsymbol{u}$ where λ is a constant.
 - **3.1** Show that such a flow is a solution of the steady state, unforced Euler equations, and find the associated pressure (stating any assumptions you are making).
 - 3.2 Assume now that the flow is cylindrically symmetric and of the form

$$\boldsymbol{u}(r,\theta,z) = \frac{1}{r} \boldsymbol{\nabla} \boldsymbol{\psi} \times \boldsymbol{e}_{\theta} + u_{\theta}(r,z) \boldsymbol{e}_{\theta}$$

where $\psi = \psi(r, z)$. Show that $\boldsymbol{\omega} \times \boldsymbol{u} = 0$ implies that

$$ru_{\theta} = G(\psi)$$

where G is some arbitrary function and that ψ is a solution of

$$-\boldsymbol{\nabla}\cdot\left(\frac{1}{r^2}\boldsymbol{\nabla}\psi\right)=\frac{1}{r^2}G\frac{dG}{d\psi}$$

- **3.3** Taking ψ of the form $\psi(r, z) = rf(r)$ along with the assertion that $G = -k\psi$, find a well behaved flow solution that satisfies $\boldsymbol{\omega} \times \boldsymbol{u} = 0$.
- **Q4** Consider a closed glass tank containing two ideal, incompressible, irrotational fluids that meet at an interface. The tank is in a lift accelerating (possibly rapidly) towards the ground. We model the tank as two dimensional so that in the frame of reference of the tank the domain is given by $D = \{(x, z) : 0 < x < L, -h < z < h\}$, the interface is given by $z = \eta(x, t)$, and the body force $\mathbf{f} = A\mathbf{e}_z g\mathbf{e}_z$, where g and A are the acceleration due to gravity and the movement of the frame, respectively. The density of the fluid above the interface is ρ_1 and below is ρ_2 and you may assume that A is constant.
 - 4.1 The linearised equations of motion satisfied by the velocity potentials are

$$egin{aligned} &\Delta\phi_1=0, \quad z>0, \ &\Delta\phi_2=0, \quad z<0, \ &rac{\partial\eta}{\partial t}=rac{\partial\phi_1}{\partial z}=rac{\partial\phi_2}{\partial z} \quad ext{at } z=0, \end{aligned}$$

along with one further condition at the interface. Find and linearise this condition.

- **4.2** Trying solutions of the form $\phi(x, z, t) = p(z)q(x)e^{-i\omega t}$ find the dispersion relation for linear waves on the interface.
- **4.3** In general, when does a dispersion relation indicate that the system is linearly unstable?
- **4.4** Under what circumstances is this system linearly unstable? Explain how the fluids evolve and find the associated growth rate.

Page number	Exam code
4 of 4	MATH41820-WE01
·	· · · · · · · · · · · · · · · · · · ·

- **Q5** Consider a flow falling under gravity between two concentric vertical rotating cylinders. The inner cylinder has a radius of *a* and rotates at angular velocity Ω_1 . The outer cylinder has a radius of *b* and rotates at angular velocity Ω_2 , where b > a. Assume that $\boldsymbol{u} = F(r)\boldsymbol{e}_z + G(r)\boldsymbol{e}_\theta$ and that p = p(r).
 - 5.1 Show that the incompressible Navier-Stokes equations reduce to

$$\frac{d\rho}{dr} = \rho_0 \frac{G^2}{r}, \quad \frac{d}{dr} \left(r \frac{dG}{dr} \right) = \frac{G}{r}, \quad \frac{d}{dr} \left(r \frac{dF}{dr} \right) = \frac{\rho_0 gr}{\mu}.$$

- **5.2** Solve to find F(r) and G(r) subject to appropriate boundary conditions.
- **5.3** Assume now that $a\Omega_1 = b\Omega_2$. Find the radius at which the slowest fluid rotation occurs.
- **5.4** Still assuming that $a\Omega_1 = b\Omega_2$, explain in terms of the action of viscosity why the flow rotates slower yet falls faster away from the walls of the cylinders.