

EXAMINATION PAPER

Examination Session: May/June Year: 2021

Exam Code:

MATH4241-WE01

Title:

Representation Theory IV

Time (for guidance only):	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: There is no restriction on the model of calculator which may be used.

Instructions to Candidates:	Credit will be given for your answers to all questions. All questions carry the same marks.			
	Please start each question on a new page. Please write your CIS username at the top of each page.		h page.	
	To receive credit, your answers must show your working explain your reasoning.			

Revision:

Page number	1 1
2 of 5	1
i.	i
L	J

Exam code	
MATH4241-WF01	1
	1
L	

In this exam, all representations are finite dimensional over the complex numbers.

- **Q1** Decide, with proof, whether each of the following statements is true or false.
 - **1.1** If *G* is a nonabelian finite group and *p* is a prime dividing |G|, then *G* has an irreducible character of degree *p*.
 - **1.2** If *G* is a nonabelian subgroup of $GL_2(\mathbb{C})$, then any matrix $A \in M_2(\mathbb{C})$ such that

Ag = gA

for all $g \in G$ is a scalar multiple of the identity.

- **1.3** Let $G \subset GL_n(\mathbb{C})$ be a closed subgroup with Lie algebra \mathfrak{g} . If $\exp(iX) \in G$ for all $X \in \mathfrak{g}$, then *G* is a complex Lie group.
- **1.4** If *V* is a finite dimensional \mathbb{C} -linear representation of $\mathfrak{sl}_{2,\mathbb{C}}$ such that every weight of *V* occurs with multiplicity one, then *V* is irreducible.
- **Q2 2.1** Show that if χ is a character of a finite group *G* and $g \in G$ has order two, then

$$\chi(g)\in\mathbb{Z}.$$

A group *G* of size 72 has conjugacy classes and two characters χ_1 and χ_2 as shown. Each conjugacy class is labeled with the order of its elements (so elements of C_3 have order 3, elements of C_{4A} have order 4, etc.).

class	C_1	C_2	C_3	C_{4A}	C_{4B}	C_{4C}
size	1	9	8	18	18	18
χ1	1	1	1	-1	1	-1
χ2	1	1	1	1	-1	-1

2.2 Show that the character table of *G* is as follows:

class	C_1	C_2	C_3	C_{4A}	C_{4B}	C_{4C}
size	1	9	8	18	18	18
X 0	1	1	1	1	1	1
χ1	1	1	1	-1	1	-1
χ2	1	1	1	1	-1	-1
Хз	1	1	1	-1	-1	1
χ4	2	-2	2	0	0	0
χ_5	8	0	-1	0	0	0

- **2.3** Decompose the character $\Lambda^2 \chi_5$ into irreducibles.
- **2.4** Show that *G* has a normal subgroup *H* of index 8, and that G/H is not isomorphic to D_4 .

Page number	Exam code
3 of 5	MATH4241-WE01

Q3 Let (ρ, \mathbb{C}^2) be the unique irreducible two-dimensional representation of the dihedral group D_3 , and let ϵ be the nontrivial character of D_3 of degree one.

Let $K = D_3 \times D_3$ and let (σ, \mathbb{C}^2) be the representation of *K* defined by

$$\sigma((g_1,g_2)) = \rho(g_1)\epsilon(g_2)$$

for all $g_1, g_2 \in D_3$.

3.1 Show that σ is irreducible.

3.2 Write down the row of the character table of K giving the character of σ .

Now let *H* be the group of order 72 generated by *K* and by an element *c* such that $c^2 = e$ and $c(g_1, g_2) = (g_2, g_1)c$ for all $(g_1, g_2) \in K$. Thus *K* is a normal subgroup of *H* of index two and every element of *H* may be written uniquely as either

$$(g_1, g_2)$$

or

$$(g_1, g_2)c$$

for $g_1, g_2 \in D_3$.

Let

 $\pi = \operatorname{Ind}_{K}^{H}(\sigma)$

and let χ be the character of π .

3.3 Show that π is irreducible.

3.4 If $r \in D_3$ is rotation by $2\pi/3$ and $s \in D_3$ is a reflection, find

 $\chi((r, s))$

and

 $\chi(C).$

Q4 Let \mathcal{P}^{ℓ} be the space of homogeneous complex polynomials of degree ℓ in x, y, and z, regarded as a representation of SO(3) by the formula

Exam code

MATH4241-WE01

$$(gf)(\mathbf{x}) = f(g^T\mathbf{x})$$

for

$$\mathbf{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

and for all $g \in SO(3)$, $f \in \mathcal{P}^{\ell}$.

Let $\mathcal{H}^{\ell} \subset \mathcal{P}^{\ell}$ be the subspace of harmonic polynomials, which is an irreducible representation of SO(3) (and therefore also of \mathfrak{so}_3 and $\mathfrak{so}_{3,\mathbb{C}}$).

Let

$$J_z = egin{pmatrix} 0 & -1 & 0 \ 1 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix} \in \mathfrak{so}_3.$$

- **4.1** Decompose $\Lambda^2 \mathcal{H}^3$ as a direct sum of irreducible representations \mathcal{H}^ℓ of SO(3).
- **4.2** State a formula for the action of J_z on \mathcal{P}^{ℓ} .
- **4.3** Find a nonzero element $L \in \mathfrak{so}_{3,\mathbb{C}}$ such that

$$[J_z, L] = -iL,$$

and prove that *L* takes weight vectors for J_z of weight *ki* to weight vectors for J_z of weight (k - 1)i.

- **4.4** Write down a highest weight vector for J_z in \mathcal{H}^{ℓ} .
- **4.5** When $\ell = 3$, find nonzero weight vectors for J_z in \mathcal{H}^{ℓ} of weights 2*i* and *i*.

r I	Page number	 ٦ ١
L	E of E	I
L	5015	Т
L		1
L		 ٦

- **Q5** Let $\mathfrak{g} = \mathfrak{sl}_{3,\mathbb{C}}$ and for $1 \leq i, j \leq 3$ distinct let $E_{ij} \in \mathfrak{g}$ be the matrix with a '1' in row *i* and column *j*, and zeros elsewhere. Let $V = \mathbb{C}^3$ be the standard representation of $\mathfrak{sl}_{3,\mathbb{C}}$.
 - **5.1** Draw weight diagrams for the representations $V \otimes V$ and $V \otimes V^*$, showing your working.
 - **5.2** If *v* is a weight vector in a representation (ρ , *W*) of \mathfrak{g} of weight α , let L(v) be the subspace spanned by

$$\rho(E_{32})\rho(E_{21})v,$$
 $\rho(E_{21})\rho(E_{32})v,$

and

 $\rho(E_{31})v.$

Show that $L(v) \subset W_{\beta}$ for some weight β , where W_{β} is the weight space of weight β .

5.3 Show that dim $L(v) \le 2$. Find an example of a representation W and nonzero weight vectors v_0 , v_1 , v_2 in W such that

$$\dim L(v_0) = 0,$$
$$\dim L(v_1) = 1,$$

and

$$\dim L(v_2) = 2.$$