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In this exam, all representations are finite dimensional over the complex numbers.

Q1 Decide, with proof, whether each of the following statements is true or false.

1.1 If G is a nonabelian finite group and p is a prime dividing jGj, then G has an
irreducible character of degree p.

1.2 If G is a nonabelian subgroup of GL2(C), then any matrix A 2 M2(C) such
that

Ag = gA

for all g 2 G is a scalar multiple of the identity.

1.3 Let G � GLn(C) be a closed subgroup with Lie algebra g. If exp(iX ) 2 G for
all X 2 g, then G is a complex Lie group.

1.4 If V is a finite dimensional C-linear representation of sl2,C such that every
weight of V occurs with multiplicity one, then V is irreducible.

Q2 2.1 Show that if � is a character of a finite group G and g 2 G has order two,
then

�(g) 2 Z.

A group G of size 72 has conjugacy classes and two characters �1 and �2 as
shown. Each conjugacy class is labeled with the order of its elements (so ele-
ments of C3 have order 3, elements of C4A have order 4, etc.).

class C1 C2 C3 C4A C4B C4C

size 1 9 8 18 18 18
�1 1 1 1 �1 1 �1
�2 1 1 1 1 �1 �1

2.2 Show that the character table of G is as follows:

class C1 C2 C3 C4A C4B C4C

size 1 9 8 18 18 18
�0 1 1 1 1 1 1
�1 1 1 1 �1 1 �1
�2 1 1 1 1 �1 �1
�3 1 1 1 �1 �1 1
�4 2 �2 2 0 0 0
�5 8 0 �1 0 0 0

2.3 Decompose the character Λ2�5 into irreducibles.

2.4 Show that G has a normal subgroup H of index 8, and that G=H is not
isomorphic to D4.
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Q3 Let (�,C2) be the unique irreducible two-dimensional representation of the dihe-
dral group D3, and let � be the nontrivial character of D3 of degree one.

Let K = D3 � D3 and let (�,C2) be the representation of K defined by

�((g1, g2)) = �(g1)�(g2)

for all g1, g2 2 D3.

3.1 Show that � is irreducible.

3.2 Write down the row of the character table of K giving the character of �.

Now let H be the group of order 72 generated by K and by an element c such that
c2 = e and c(g1, g2) = (g2, g1)c for all (g1, g2) 2 K . Thus K is a normal subgroup
of H of index two and every element of H may be written uniquely as either

(g1, g2)

or
(g1, g2)c

for g1, g2 2 D3.

Let
� = IndH

K (�)

and let � be the character of �.

3.3 Show that � is irreducible.

3.4 If r 2 D3 is rotation by 2�=3 and s 2 D3 is a reflection, find

� ((r , s))

and
�(c).
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Q4 Let P` be the space of homogeneous complex polynomials of degree ` in x , y ,
and z, regarded as a representation of SO(3) by the formula

(gf )(x) = f (gT x)

for

x =

0
B@

x
y
z

1
CA

and for all g 2 SO(3), f 2 P`.

Let H` � P` be the subspace of harmonic polynomials, which is an irreducible
representation of SO(3) (and therefore also of so3 and so3,C).

Let

Jz =

0
B@

0 �1 0
1 0 0
0 0 0

1
CA 2 so3.

4.1 Decompose Λ2H3 as a direct sum of irreducible representationsH` of SO(3).

4.2 State a formula for the action of Jz on P`.

4.3 Find a nonzero element L 2 so3,C such that

[Jz , L] = �iL,

and prove that L takes weight vectors for Jz of weight ki to weight vectors for
Jz of weight (k � 1)i .

4.4 Write down a highest weight vector for Jz in H`.

4.5 When ` = 3, find nonzero weight vectors for Jz in H` of weights 2i and i .
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Q5 Let g = sl3,C and for 1 � i , j � 3 distinct let Eij 2 g be the matrix with a ‘1’ in row
i and column j , and zeros elsewhere. Let V = C3 be the standard representation
of sl3,C.

5.1 Draw weight diagrams for the representations V 
 V and V 
 V �, showing
your working.

5.2 If v is a weight vector in a representation (�, W ) of g of weight �, let L(v ) be
the subspace spanned by

�(E32)�(E21)v ,
�(E21)�(E32)v ,

and

�(E31)v .

Show that L(v ) � W� for some weight �, where W� is the weight space of
weight �.

5.3 Show that dim L(v ) � 2. Find an example of a representation W and nonzero
weight vectors v0, v1, v2 in W such that

dim L(v0) = 0,
dim L(v1) = 1,

and

dim L(v2) = 2.
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