

EXAMINATION PAPER

Examination Session: May/June

2022

Year:

Exam Code:

MATH1607-WE01

Title:

Dynamics I

Time:	2 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Credit will be given for your answers to each question. All questions carry the same marks. Students must use the mathematics specific answer book.		
		I	

Revision:

- **Q1** (a) A particle of unit mass moves along a line, acted on by a force $F = -2v + e^{-t}$, where *v* denotes its velocity and *t* denotes time. At time *t* = 0 the velocity is zero. For what value of *t* is the speed a maximum?
 - (b) A particle of mass m = 1 on the *x*-axis is attached to a spring with spring constant k = 4, and is subject to an additional force $F = 8 \sin(pt) \cos(pt)$, where *p* is a positive constant. Find its position x(t) if *p* is tuned to the value which makes the system resonant, and the initial conditions are x(0) = 0, $\dot{x}(0) = 0$.
 - (c) Determine for which value(s) of the constants n and m the force

$$\mathbf{F} = yz(nx + y)\mathbf{i} + xz(x + my)\mathbf{j} + xy(x + y)\mathbf{k}$$

is conservative; and for those values find the potential V(x, y, z).

- **Q2** (a) A particle of mass 2m and speed v moves along the *x*-axis, and collides head-on with a particle of mass m at rest. They continue on the *x*-axis, with the lighter particle moving at speed v/3. What fraction β of the initial kinetic energy is lost in the collision?
 - (b) A particle of unit mass and unit charge moves in a magnetic field $\mathbf{B} = B\mathbf{k}$, where *B* is a positive constant. In addition to the Lorentz force, it feels a resistive force, pointing in the opposite direction to its velocity $\mathbf{v}(t)$, and of magnitude $\alpha |\mathbf{v}|$ where α is a constant. Given that $\mathbf{v}(0) = w\mathbf{i}$, find $\mathbf{v}(t)$. [Hint: you could use an integrating factor $\exp(\alpha t)$.]
- Q3 (a) A particle of unit mass moves along the positive *x*-axis in a potential

$$V(x) = -2\log x - \frac{1}{2}x^2 + 3x.$$

- (i) Determine the equilibrium positions of the particle.
- (ii) Calculate the period of small oscillations about the stable equilibrium.
- (iii) If the particle starts at x = 1 with initial velocity u, for what values of u does it escape to infinity?
- (b) A mass m_1 is travelling in the positive *x*-direction. A mass m_2 is travelling in a direction which makes an angle $\pi/3$ with the *x*-axis, and which has negative *x*-component. The two masses collide elastically. Afterwards, m_1 is stationary, while the velocity of m_2 makes an angle $\pi/6$ with the *x*-axis. Compute the ratio $R = m_1/m_2$.

Q4

Exam code

MATH1607-WE01

- (b) A unit-mass particle moves in an attractive central force of magnitude $f(r) = k/r^3$, where (r, θ) are polar coordinates and *k* is a constant. At time t = 0 the particle is at the point $(r, \theta) = (R, 0)$ and its velocity is se_{θ} .
 - (i) Assuming that $0 < k < R^2 s^2$, find an expression for *r* in terms of θ , *k*, *R* and *s*. You may use, without proof, the orbit equation

$$\frac{d^2u}{d\theta^2}+u=(Lu)^{-2}f(u^{-1}),$$

where u = 1/r and *L* is the magnitude of angular momentum.

- (ii) Compute the energy *E* of the trajectory, with the potential energy satisfying $V(r) \rightarrow 0$ as $r \rightarrow \infty$. Is the trajectory bounded? (Justify your answer.)
- **Q5** (a) Find the solution u(x, t) of the wave equation $\frac{\partial^2 u}{\partial t^2} = 4\frac{\partial^2 u}{\partial x^2}$ satisfying the initial conditions $u(x, 0) = \sin^2(2x)$ and $\frac{\partial u(x, 0)}{\partial t} = 8\sin(2x)\cos(2x)$.
 - (b) A light rigid rod of length *L* is pivoted at one end, and can swing freely in a vertical plane. Four equal masses are attached to the rod, with equal spacing: so the masses are at distances L/4, L/2, 3L/4 and *L* from the pivot. The total mass is *M*, and gravity acts downwards with acceleration *g*.
 - (i) Compute the distance *D* from the pivot to the centre of mass of the system.
 - (ii) Compute the moment of inertia *I* of the system about its pivot.
 - (iii) Let θ denote the angle by which the rod deviates from its stable equilibrium. Write an expression for the total energy *E* in terms of *L*, *M*, *g*, θ and $\dot{\theta}$.
 - (iv) If the pendulum begins at its stable equilibrium position, with initial angular speed $\dot{\theta}(0) = q$, what is the maximum value of q for which the system will not reach its unstable equilibrium?