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SECTION A

Q1 Consider a Lagrangian of the form

L =
1

2
(q̇2

1 + q̇2
2) + cos(q1 + q2) .

1.1 Write down the equations of motion for the system. You do not need to solve
them.

1.2 Show that q1(t) = q2(t) = 0 is a solution of the equations of motion.

1.3 Find an approximate Lagrangian Lapp describing small perturbations around
q1(t) = q2(t) = 0.

1.4 Find the general solution of the equations of motion derived from Lapp.

Q2 2.1 The expression for the energy of a system with Lagrangian L is given by

E =

(
n∑
i=1

q̇i
∂L

∂q̇i

)
− L .

Show that if L does not depend explicitly on time, then E is conserved along
solutions of the equations of motion.

2.2 Consider a theory with a Lagrangian of the form

L =
1

2
q̇2
1 +

1

4
q3
1 q̇

4
2 − f(q1, q2) ,

with f an arbitrary function of two arguments. Construct the canonical mo-
menta p1 and p2 associated to q1 and q2.

2.3 Find the Hamiltonian for the system.

Q3 A quantum mechanical system is, at t = 0, prepared in a state described by the
wave function

ψ(t = 0, x) = C

(
1√
2
ψE=1(x) + eiβψE=2(x)

)
,

where C and β are real constants. The functions ψE=1 and ψE=2 are normalised
energy-eigenfunctions of the system, with eigenvalues as indicated.

3.1 Determine the constant C. Is it possible to observe the overall phase factor of
this constant? Motivate your answer.

3.2 An energy measurement is made. What are the possible outcomes, and what
are the probabilities of those outcomes?

3.3 Is it possible to observe the value of the phase β? Motivate your answer.
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Q4 Consider a potential for a one-dimensional quantum particle, corresponding to a
uniform constant force,

V (x) = −Fx ,

where F is a real constant.

4.1 Write down the time-independent Schrödinger equation in momentum space
for the wave function ψ̃(p), including the potential given above.

4.2 Find the solution ψ̃(p) up to a normalisation constant.

SECTION B

Q5 Consider a system where the Lagrangian L(q, q̇, q̈) depends on the positions q =
(q1, . . . , qn), velocities q̇ = (q̇1, . . . , q̇n) and accelerations q̈ = (q̈1, . . . , q̈n). In this
case the n Euler-Lagrange equations of motion are

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
+
d2

dt2

(
∂L

∂q̈i

)
= 0

for i ∈ {1, . . . , n}.
We assume that the transformation qi → qi+ εai(q) (with n independent generators
a1, . . . , an) leaves the Lagrangian L(q, q̇, q̈) invariant to first order in ε.

5.1 Assume first that L does not depend on the accelerations q̈i. Show that in this
case the Noether charge

Q =
n∑
i=1

ai
∂L

∂q̇i

is conserved.

5.2 Coming back to the more general case where L(q, q̇, q̈) does depend on the
accelerations q̈i, find a conserved charge Q associated to the transformation
generated by the ai. [Hint: Try to write the variation of L to first order in ε
as a total time derivative.]

5.3 As an example, find the explicit form for Q when the Lagrangian is

L2 := −α
2

(q̈2
1 + q̈2

2) +
β

2
(q̇2

1 + q̇2
2)− γ

2
(q2

1 + q2
2)

and the transformation is a rotation around the origin in the (q1, q2) plane.

5.4 Verify by taking the time derivative that the explicit Q that you just found is
conserved along solutions of the equations of motion for the Lagrangian L2.
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Q6 We describe a string oscillating in one dimension by a field u(x, t) with Lagrangian
density

L =
1

2
u2
t −

1

2
u2
x −

1

2
mu2

with ut := ∂u
∂t

and ux := ∂u
∂x

. The string extends from x = −∞ to x = 0, where it
ends on a bead of mass h that is constrained to move on the vertical line x = 0.
The bead can slide without friction along x = 0, and we ignore the effect of gravity.

6.1 Find the equation of motion for u valid in the region x < 0.

6.2 Using that the energy-momentum tensor is given by

Tij =
∂L
∂uj

∂u

∂xi
− δijL ,

where uj := ∂u/∂xj, compute the energy flux Ttx associated to L.

6.3 Consider an ansatz given by

u(x, t) = Re
(
eiωt(e−ikx + ρeikx)

)
,

where Re(z) indicates taking the real part of z, and ρ is a complex number,
which for generic h we assume to be different from −1. Find the values of ω
and ρ (as functions of k, m and h) that make this ansatz a solution of the
problem. [Hint: Impose energy conservation at the boundary.]

6.4 Consider the (m,h) = (0, 0) case. Which standard boundary condition for the
massless scalar does this correspond to? Similarly, which standard boundary
condition do you obtain in the (m,h)→ (0,∞) limit? Show in both cases that
the form of u(x, t) is the expected one.
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Q7 Consider a system of two one-dimensional, distinguishable particles in a simple
harmonic oscillator potential of frequency ω. The coordinates of the two particles
are x1 and x2.

7.1 Give the energy eigenfunctions for the two-particle system in terms of the
energy eigenfunctions of the one-particle simple harmonic oscillator. Show
that the energy eigenvalues for the two-particle wave functions take the form
E = (n1 + n2 + 1)~ω (with n1 and n2 integers).

7.2 Now assume that the particles are indistinguishable. This means that all prob-
abilities have to remain unchanged under an exchange x1 ↔ x2, so∣∣∣ψ(x1, x2, t)

∣∣∣2 =
∣∣∣ψ(x2, x1, t)

∣∣∣2 .
Show that there are now only two independent wave functions ψ(x1, x2, t) for
a state with energy E = 2~ω (up to an irrelevant phase factor).

7.3 The explicit form of the first two wave functions for the single particle system
are given by

ψn=0(x) = C exp

(
−mωx

2

2~

)
, ψn=1(x) =

√
2mω

~
x × ψn=0(x) .

Rewrite the two wave functions found in 7.2 in terms of the centre of mass X
and separation y,

X =
1

2
(x1 + x2) , y = x1 − x2 .

7.4 Determine the probability density for the separation P (y) by averaging over X,
separately for the two wave functions found in 7.3. You do not have to work
out the overall normalisation factors.

7.5 Sketch the form of P (y) for the two cases. Which of the two describes a system
in which particles repel each other?
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Q8 Consider the time-dependent Schrödinger equation for a single free particle. A
Galilean transformation is a transformation on x and p which takes us to the coor-
dinates of a moving observer, so in particular x→ x′ = x+ vt (and t = t′).

8.1 Write down the Schrödinger equation (and include a generic potential V (x, t)).
Transform coordinates to x′, t′, assuming that the wave function in primed
coordinates is related to the one in unprimed coordinates by a phase factor,

ψ′(x′, t′) = exp
[
if(x′, t′)

]
ψ(x, t) ,

where f(x′, t′) is real. Use that V ′(x′, t′) = V (x, t). [Hint: First show that

∂

∂x
=

∂

∂x′
,

∂

∂t
=

∂

∂t′
+ v

∂

∂x′
.

and then apply this to the Schrödinger equation. ]

8.2 Show that the Schrödinger equation in primed coordinates has the same form
as the one in unprimed coordinates when

f(x′, t′) =
mvx′ − 1

2
mv2t′

~
.

8.3 Consider now the situation V (x) = 0. The momentum eigenfunction for a
single particle reads

ψ(x, t) = e
i
~px−iωt , ω =

p2

2~m
.

Transform it to ψ′(x′, t′) and show that the result is consistent with the trans-
formation which you expect x′ = x+ vt to induce on the momentum.
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