

EXAMINATION PAPER

Examination Session: May/June

2022

Year:

Exam Code:

MATH2071-WE01

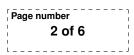
Title:

Mathematical Physics II

Time:	3 hours	
Additional Material provided:		
Matariala Darmittadı		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators
		is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.	
	Students must use the mathematics specific answer book.	

Revision:



SECTION A

Q1 Consider a Lagrangian of the form

$$L = \frac{1}{2}(\dot{q}_1^2 + \dot{q}_2^2) + \cos(q_1 + q_2).$$

- **1.1** Write down the equations of motion for the system. You do not need to solve them.
- **1.2** Show that $q_1(t) = q_2(t) = 0$ is a solution of the equations of motion.
- **1.3** Find an approximate Lagrangian L_{app} describing small perturbations around $q_1(t) = q_2(t) = 0$.
- **1.4** Find the general solution of the equations of motion derived from L_{app} .
- **Q2** 2.1 The expression for the energy of a system with Lagrangian L is given by

$$E = \left(\sum_{i=1}^{n} \dot{q}_i \frac{\partial L}{\partial \dot{q}_i}\right) - L.$$

Show that if L does not depend explicitly on time, then E is conserved along solutions of the equations of motion.

2.2 Consider a theory with a Lagrangian of the form

$$L = \frac{1}{2}\dot{q}_1^2 + \frac{1}{4}q_1^3\dot{q}_2^4 - f(q_1, q_2),$$

with f an arbitrary function of two arguments. Construct the canonical momenta p_1 and p_2 associated to q_1 and q_2 .

- 2.3 Find the Hamiltonian for the system.
- Q3 A quantum mechanical system is, at t = 0, prepared in a state described by the wave function

$$\psi(t=0,x) = C\left(\frac{1}{\sqrt{2}}\psi_{E=1}(x) + e^{i\beta}\psi_{E=2}(x)\right),$$

where C and β are real constants. The functions $\psi_{E=1}$ and $\psi_{E=2}$ are normalised energy-eigenfunctions of the system, with eigenvalues as indicated.

- **3.1** Determine the constant C. Is it possible to observe the overall phase factor of this constant? Motivate your answer.
- **3.2** An energy measurement is made. What are the possible outcomes, and what are the probabilities of those outcomes?
- **3.3** Is it possible to observe the value of the phase β ? Motivate your answer.

- Exam code MATH2071-WE01
- **Q4** Consider a potential for a one-dimensional quantum particle, corresponding to a uniform constant force,

$$V(x) = -Fx,$$

where F is a real constant.

- 4.1 Write down the time-independent Schrödinger equation in momentum space for the wave function $\tilde{\psi}(p)$, including the potential given above.
- **4.2** Find the solution $\tilde{\psi}(p)$ up to a normalisation constant.

SECTION B

Q5 Consider a system where the Lagrangian $L(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}})$ depends on the positions $\boldsymbol{q} = (q_1, \ldots, q_n)$, velocities $\dot{\boldsymbol{q}} = (\dot{q}_1, \ldots, \dot{q}_n)$ and accelerations $\ddot{\boldsymbol{q}} = (\ddot{q}_1, \ldots, \ddot{q}_n)$. In this case the *n* Euler-Lagrange equations of motion are

$$\frac{\partial L}{\partial q_i} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) + \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial \ddot{q}_i} \right) = 0$$

for $i \in \{1, ..., n\}$.

We assume that the transformation $q_i \rightarrow q_i + \epsilon a_i(\mathbf{q})$ (with *n* independent generators a_1, \ldots, a_n) leaves the Lagrangian $L(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}})$ invariant to first order in ϵ .

5.1 Assume first that L does not depend on the accelerations \ddot{q}_i . Show that in this case the Noether charge

$$Q = \sum_{i=1}^{n} a_i \frac{\partial L}{\partial \dot{q}_i}$$

is conserved.

- **5.2** Coming back to the more general case where $L(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}})$ does depend on the accelerations \ddot{q}_i , find a conserved charge Q associated to the transformation generated by the a_i . [*Hint:* Try to write the variation of L to first order in ϵ as a total time derivative.]
- **5.3** As an example, find the explicit form for Q when the Lagrangian is

$$L_2 \coloneqq -\frac{\alpha}{2}(\ddot{q}_1^2 + \ddot{q}_2^2) + \frac{\beta}{2}(\dot{q}_1^2 + \dot{q}_2^2) - \frac{\gamma}{2}(q_1^2 + q_2^2)$$

and the transformation is a rotation around the origin in the (q_1, q_2) plane.

5.4 Verify by taking the time derivative that the explicit Q that you just found is conserved along solutions of the equations of motion for the Lagrangian L_2 .

Q6 We describe a string oscillating in one dimension by a field u(x,t) with Lagrangian density

$$\mathcal{L} = \frac{1}{2}u_t^2 - \frac{1}{2}u_x^2 - \frac{1}{2}mu^2$$

with $u_t \coloneqq \frac{\partial u}{\partial t}$ and $u_x \coloneqq \frac{\partial u}{\partial x}$. The string extends from $x = -\infty$ to x = 0, where it ends on a bead of mass h that is constrained to move on the vertical line x = 0. The bead can slide without friction along x = 0, and we ignore the effect of gravity.

- **6.1** Find the equation of motion for u valid in the region x < 0.
- 6.2 Using that the energy-momentum tensor is given by

$$T_{ij} = \frac{\partial \mathcal{L}}{\partial u_j} \frac{\partial u}{\partial x_i} - \delta_{ij} \mathcal{L} \,,$$

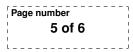
where $u_i \coloneqq \partial u / \partial x_i$, compute the energy flux T_{tx} associated to \mathcal{L} .

6.3 Consider an ansatz given by

$$u(x,t) = \operatorname{Re}\left(e^{i\omega t}(e^{-ikx} + \rho e^{ikx})\right),$$

where $\operatorname{Re}(z)$ indicates taking the real part of z, and ρ is a complex number, which for generic h we assume to be different from -1. Find the values of ω and ρ (as functions of k, m and h) that make this ansatz a solution of the problem. [*Hint:* Impose energy conservation at the boundary.]

6.4 Consider the (m, h) = (0, 0) case. Which standard boundary condition for the massless scalar does this correspond to? Similarly, which standard boundary condition do you obtain in the $(m, h) \rightarrow (0, \infty)$ limit? Show in both cases that the form of u(x, t) is the expected one.



- **Q7** Consider a system of two one-dimensional, distinguishable particles in a simple harmonic oscillator potential of frequency ω . The coordinates of the two particles are x_1 and x_2 .
 - 7.1 Give the energy eigenfunctions for the two-particle system in terms of the energy eigenfunctions of the one-particle simple harmonic oscillator. Show that the energy eigenvalues for the two-particle wave functions take the form $E = (n_1 + n_2 + 1)\hbar\omega$ (with n_1 and n_2 integers).
 - **7.2** Now assume that the particles are *indistinguishable*. This means that all probabilities have to remain unchanged under an exchange $x_1 \leftrightarrow x_2$, so

$$|\psi(x_1, x_2, t)|^2 = |\psi(x_2, x_1, t)|^2.$$

Show that there are now only *two* independent wave functions $\psi(x_1, x_2, t)$ for a state with energy $E = 2\hbar\omega$ (up to an irrelevant phase factor).

7.3 The explicit form of the first two wave functions for the single particle system are given by

$$\psi_{n=0}(x) = C \exp\left(-\frac{m\omega x^2}{2\hbar}\right), \quad \psi_{n=1}(x) = \sqrt{\frac{2m\omega}{\hbar}}x \times \psi_{n=0}(x).$$

Rewrite the two wave functions found in 7.2 in terms of the centre of mass X and separation y,

$$X = \frac{1}{2}(x_1 + x_2), \quad y = x_1 - x_2.$$

- **7.4** Determine the probability density for the separation P(y) by averaging over X, separately for the two wave functions found in **7.3**. You do *not* have to work out the overall normalisation factors.
- **7.5** Sketch the form of P(y) for the two cases. Which of the two describes a system in which particles repel each other?

Page number	Exam code
6 of 6	MATH2071-WE01
	!

- **Q8** Consider the time-dependent Schrödinger equation for a single free particle. A Galilean transformation is a transformation on x and p which takes us to the coordinates of a moving observer, so in particular $x \to x' = x + vt$ (and t = t').
 - 8.1 Write down the Schrödinger equation (and include a generic potential V(x,t)). Transform coordinates to x', t', assuming that the wave function in primed coordinates is related to the one in unprimed coordinates by a phase factor,

$$\psi'(x',t') = \exp\left[if(x',t')\right]\psi(x,t)$$

where f(x',t') is real. Use that V'(x',t') = V(x,t). [Hint: First show that

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial x'}, \quad \frac{\partial}{\partial t} = \frac{\partial}{\partial t'} + v \frac{\partial}{\partial x'}$$

and then apply this to the Schrödinger equation.]

8.2 Show that the Schrödinger equation in primed coordinates has the same form as the one in unprimed coordinates when

$$f(x',t') = \frac{mvx' - \frac{1}{2}mv^2t'}{\hbar}.$$

8.3 Consider now the situation V(x) = 0. The momentum eigenfunction for a single particle reads

$$\psi(x,t) = e^{\frac{i}{\hbar}px - i\omega t}, \quad \omega = \frac{p^2}{2\hbar m}.$$

Transform it to $\psi'(x', t')$ and show that the result is consistent with the transformation which you expect x' = x + vt to induce on the momentum.