

EXAMINATION PAPER

Examination Session: May/June Year: 2022

Exam Code:

MATH2617-WE01

Title:

Elementary Number Theory II

Time:	2 hours	
Additional Material provided:		
Matariala Darmittadi		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators
		is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.		
	Students must use the mathematics specific answer book.		

Revision:

SECTION A

- **Q1** (a) Find the remainder $r \in \mathbb{N}$, r < 41, when $7^{7^{101}}$ is divided by 41.
 - (b) Find all the integer solutions to the equation

$$153x - 34y = 68.$$

- **Q2** (a) Let p be a prime number such that q = 4p + 1 is also a prime number. Prove that 2 is a primitive root mod q. (*Hint: Use Euler's criterion.*)
 - (b) You are given that the continued fraction expansion of $\sqrt{22}$ is

$$[4; \overline{1, 2, 4, 2, 1, 8}].$$

Find a solution $(x, y) \in \mathbb{N}^2$ to the equation $x^2 - 22y^2 = 1$.

SECTION B

Q3 (a) Find an $x \in \mathbb{N}$ such that

$$x^7 \equiv 2 \pmod{79}$$

- (b) Let p be an odd prime. You are given the fact that any primitive root mod p is a quadratic non-residue (NR). Find the number of NRs mod 83 that are not primitive roots mod 83.
- (c) Let $g, m \in \mathbb{N}$ be such that gcd(g, m) = 1. Show that g is a primitive root modulo m if and only if

$$g^{\varphi(m)/p} \not\equiv 1 \pmod{m}$$

for every prime divisor p of $\varphi(m)$. (Here φ is the Euler φ -function.)

- **Q4** Let p be a prime such that $p \equiv 4 \pmod{7}$.
 - (a) Prove that there exists an $\alpha \in \mathbb{Z}$ such that $\alpha^2 \equiv -7 \pmod{p}$.
 - (b) Prove that we can choose $x, y \in \mathbb{Z}$, $(x, y) \neq (0, 0)$, such that $x^2 + 7y^2 \equiv 0 \pmod{p}$ and such that $|x|, |y| < \sqrt{p}$.
 - (c) Prove that

$$x^2 + 7y^2 = p$$

has a solution $(x, y) \in \mathbb{Z}^2$.