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Unless stated otherwise, you are allowed to use any result from the lecture
notes or problem sheets provided you state it correctly.

SECTION A

Q1 Given a link diagram D, we may colour it with three different colours according to
the following two rules.

• Each arc is assigned exactly one colour;

• At each crossing, either all arcs have the same colour, or arcs of all three colours
are used.

Every way of colouring D in such a way is referred to as a colouring. We define the
colouring number of D, denoted by col(D), as the number of different colourings
(up to relabeling) of D. For example, the colouring number of the standard diagram
of the unknot is 1 as there is only one arc which—according to the rules—can only
have one colour (up to relabeling).

(a) Show that the colouring number of the standard diagram of the trefoil knot is 2.

(b) Show that the colouring number is invariant under (R1) and (R2) moves.

(c) One can show—and you can take this for granted in the following—that the
colouring number is also invariant under (R3) moves. Accordingly, we may
speak of the colouring number of a knot K which we may also denote by
col(K). One can further show—and again, you can take this for granted in the
following—that

col(K1 +K2) = col(K1) · col(K2).

As always, the above sum is understood to be a composition in the case of
non-invertible knots.

Using the above formula, show that there is no knot K such that T +K = U .
Here, T denotes the trefoil knot and U denotes the unknot.

Q2 (a) Give a sequence of Reidemeister moves (and unambiguously specify where each
move takes place) which shows that the two link diagrams below are isotopic.

(b) Orient the components of the diagram on the left-hand side in two different
ways to obtain two non-isotopic diagrams D1 and D2.

(c) Recall that we may apply Seifert’s algorithm to oriented link diagrams. Denote
by SD1 and SD2 the surfaces that we obtain by applying Seifert’s algorithm to
D1 and D2, respectively (with D1 and D2 your oriented diagrams from (b)).
Are SD1 and SD2 equivalent?
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SECTION B

Q3 In this problem, you may use without proof that the bracket polynomial is invariant
under (R2) and (R3) moves.

(a) Give the defining relations of the Bracket polynomial.

(b) Show one of the following two equations (you may use both in later parts of
this question)〈 〉

= −A3
〈 〉

,
〈 〉

= −A−3
〈 〉

.

(c) Given a Laurent polynomial p[A], we denote the difference between its highest
power and its lowest power by span(p). For example, given a polynomial

p[A] = A2 − 2− 7A−1 + 3A−4,

we have span(p) = 2− (−4) = 6. Show that span〈D〉 is an isotopy invariant.

(d) According to the above, given a knot K, we may write span〈K〉 to refer to
span〈D〉 with D any diagram for K. Let T ′ be the mirror image of the trefoil
knot. Compute span〈T ′〉 and conclude that T ′ is not the unknot.

(e) Let α = exp(iπ/3). Show that 〈D〉(α) (the bracket polynomial evaluated at
α) is an isotopy invariant. Show that 〈D〉(α) = 1 for all link diagrams D.

Hint: You may find useful that cos(2π/3) = −1/2.

Q4 (a) State the Classification Theorem for compact connected surfaces.

(b) Let S be the compact, connected, orientable surface of genus g with d open
discs removed, where g, d ≥ 0. Show that χ(S) = 2− 2g − d.

(c) Recall that a convex polyhedron is the convex hull of finitely many points in
R3 which are not coplanar (that is, they do not lie in one plane). Each face
of a convex polyhedron is a convex polygon; see the figure at the bottom of
this page for an example. Given a convex polyhedron, we denote the number
of k-gons among its faces by nk (where k ≥ 3). That is, n3 is the number of
triangle faces, n4 is the number of quadrilateral faces etc. (e.g. in the below
example, we have n3 = 8 and nk = 0 for all k > 3).

Show that for every convex polyhedron, we have

3n3 + 2n4 + n5 ≥ 12 + n7 + 2n8 + 3n9 + 4n10 + . . .

When do we have equality in the above expression?

Hint: You may use without proof that for every polyhedron

2 = V − E + F,

where V is the number of vertices, E is the number of edges and F is the
number of faces of the respective polyhedron.

ED01/2022
University of Durham Copyright

END


