

EXAMINATION PAPER

Examination Session: May/June

2022

Year:

Exam Code:

MATH2627-WE01

Title:

Geometric Topology II

Time:	2 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.
	Students must use the mathematics specific answer book.

Revision:

Unless stated otherwise, you are allowed to use any result from the lecture notes or problem sheets provided you state it correctly.

SECTION A

- **Q1** Given a link diagram D, we may colour it with three different colours according to the following two rules.
 - Each arc is assigned exactly one colour;
 - At each crossing, either all arcs have the same colour, or arcs of all three colours are used.

Every way of colouring D in such a way is referred to as a *colouring*. We define the *colouring number* of D, denoted by col(D), as the number of different colourings (up to relabeling) of D. For example, the colouring number of the standard diagram of the unknot is 1 as there is only one arc which—according to the rules—can only have one colour (up to relabeling).

- (a) Show that the colouring number of the standard diagram of the trefoil knot is 2.
- (b) Show that the colouring number is invariant under (R1) and (R2) moves.
- (c) One can show—and you can take this for granted in the following—that the colouring number is also invariant under (R3) moves. Accordingly, we may speak of the colouring number of a knot K which we may also denote by col(K). One can further show—and again, you can take this for granted in the following—that

$$\operatorname{col}(K_1 + K_2) = \operatorname{col}(K_1) \cdot \operatorname{col}(K_2).$$

As always, the above sum is understood to be \underline{a} composition in the case of non-invertible knots.

Using the above formula, show that there is no knot K such that T + K = U. Here, T denotes the trefoil knot and U denotes the unknot.

Q2 (a) Give a sequence of Reidemeister moves (and unambiguously specify where each move takes place) which shows that the two link diagrams below are isotopic.

- (b) Orient the components of the diagram on the left-hand side in two different ways to obtain two non-isotopic diagrams D_1 and D_2 .
- (c) Recall that we may apply Seifert's algorithm to oriented link diagrams. Denote by S_{D_1} and S_{D_2} the surfaces that we obtain by applying Seifert's algorithm to D_1 and D_2 , respectively (with D_1 and D_2 your oriented diagrams from (b)). Are S_{D_1} and S_{D_2} equivalent?

SECTION B

- **Q3** In this problem, you may use without proof that the bracket polynomial is invariant under (R2) and (R3) moves.
 - (a) Give the defining relations of the Bracket polynomial.
 - (b) Show <u>one</u> of the following two equations (you may use both in later parts of this question)

$$\left\langle \begin{array}{c} \swarrow \\ \end{array} \right\rangle = -A^{3} \left\langle \begin{array}{c} \langle \end{array} \right\rangle, \qquad \left\langle \begin{array}{c} \frown \\ \end{array} \right\rangle = -A^{-3} \left\langle \begin{array}{c} \langle \end{array} \right\rangle.$$

(c) Given a Laurent polynomial p[A], we denote the difference between its highest power and its lowest power by span(p). For example, given a polynomial

$$p[A] = A^2 - 2 - 7A^{-1} + 3A^{-4},$$

we have $\operatorname{span}(p) = 2 - (-4) = 6$. Show that $\operatorname{span}(D)$ is an isotopy invariant.

- (d) According to the above, given a knot K, we may write $\operatorname{span}\langle K \rangle$ to refer to $\operatorname{span}\langle D \rangle$ with D any diagram for K. Let T' be the mirror image of the trefoil knot. Compute $\operatorname{span}\langle T' \rangle$ and conclude that T' is not the unknot.
- (e) Let $\alpha = \exp(i\pi/3)$. Show that $\langle D \rangle(\alpha)$ (the bracket polynomial evaluated at α) is an isotopy invariant. Show that $\langle D \rangle(\alpha) = 1$ for all link diagrams D. Hint: You may find useful that $\cos(2\pi/3) = -1/2$.
- Q4 (a) State the Classification Theorem for compact connected surfaces.
 - (b) Let S be the compact, connected, orientable surface of genus g with d open discs removed, where $g, d \ge 0$. Show that $\chi(S) = 2 2g d$.
 - (c) Recall that a convex polyhedron is the convex hull of finitely many points in \mathbb{R}^3 which are not coplanar (that is, they do not lie in one plane). Each face of a convex polyhedron is a convex polygon; see the figure at the bottom of this page for an example. Given a convex polyhedron, we denote the number of k-gons among its faces by n_k (where $k \geq 3$). That is, n_3 is the number of triangle faces, n_4 is the number of quadrilateral faces etc. (e.g. in the below example, we have $n_3 = 8$ and $n_k = 0$ for all k > 3).

Show that for every convex polyhedron, we have

$$3n_3 + 2n_4 + n_5 \ge 12 + n_7 + 2n_8 + 3n_9 + 4n_{10} + \dots$$

When do we have equality in the above expression? *Hint: You may use without proof that for every polyhedron*

$$2 = V - E + F,$$

where V is the number of vertices, E is the number of edges and F is the number of faces of the respective polyhedron.

