

EXAMINATION PAPER

Examination Session: May/June Year: 2022

Exam Code:

MATH2687-WE01

Title:

Data Science and Statistical Computing II

Time:	2 hours		
Additional Material provided:	Tables: Normal distribution, t-distribution.		
Materials Permitted:			
Calculators Permitted:	Yes	Models Permitted: Casio FX83 series or FX85 series.	

Instructions to Candidates:	Answer all questions.
	each section, all questions carry equal marks.

Revision:

SECTION A

- Q1 Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ consist of a set of *n* independent observations of a random variable, *X*, having unknown probability distribution. We are interested in estimating some real-valued parameter θ using a statistic $S(\cdot)$.
 - **1.1** Write down the estimator $\hat{\theta}$ and give detailed steps for how to estimate its variance via the Bootstrap.
 - **1.2** The parameter of interest, θ , is the probability that X is zero. Write down the equation for a statistic, $S(\cdot)$, to estimate this parameter. You collect data:

$$x_1 = 0, x_2 = 4, x_3 = 1$$

Assuming you perform Bootstrap resampling, write down all possible values for $S(\cdot)$ and the probability of observing each one.

1.3 Find $\mathbb{E}[\bar{S}^*]$ without performing any simulation and estimate the implied bias in using this statistic to estimate θ .

- **Q2 2.1** State the inverse sampling algorithm to simulate a random variable X having cumulative distribution function (cdf) F(x). Take care as part of your answer to precisely define the generalised inverse cdf.
 - **2.2** Prove that samples generated by inverse sampling have the required cdf, F(x).
 - **2.3** Let the random variable X have probability density function,

$$f(x) = \begin{cases} \frac{\pi}{2}\sin(\pi x) & x \in [0,1] \\ 0 & \text{otherwise} \end{cases}$$

and suppose that 0.42 and 0.89 are two values simulated from a Uniform(0,1). Use these Uniform simulations to produce simulations of X using the inverse sampling algorithm.

Exa	am code	٦ ١
1	MATH2687-WE01	T T
1		ł

SECTION B

Q3 In the science of ballistics, the Circular Error Probability (CEP) is used to evaluate the precision of firearms. It is defined to be the radius of a circle, centred on the mean, which is expected to include 50% of bullets fired. For example:

By making simplifying assumptions, we can directly model the random radial distance of each shot, R, from the mean as Rayleigh distributed with probability density function:

$$f(r) = \begin{cases} \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) & \text{when } r \in [0, \infty) \\ 0 & \text{otherwise} \end{cases}$$

The Department of Defence needs to test if the manufacturer's claim of a CEP of 0.5 is plausible given 20 shots at a test target. Those 20 shots resulted in an empirical CEP radius of 0.64.

They ask you to perform the test:

$$H_0: CEP = 0.5$$
 versus $H_1: CEP > 0.5$

- **3.1** Find the cdf of the Rayleigh distribution. Show that the median of the Rayleigh distribution is $\sigma\sqrt{2\log 2}$. Find the value of σ which corresponds to the null hypothesis to be tested.
- **3.2** In order to perform the above test, your colleague suggests using the test statistic

 $T = h(R_1, \dots, R_{20}) = \text{median}(R_1, \dots, R_{20}) - 0.5$

Would this be ok and why (or why not)?

- **3.3** Describe in detail how to conduct a Monte Carlo hypothesis test in this particular setting (eg state what is simulated etc).
- **3.4** Following the steps you provided, your colleague has produced 100 simulations of the test statistic, ordered and shown as follows:

Estimate the p-value based on this (small) Monte Carlo simulation. What would you tell the Department of Defence?

3.5 Define the resampling risk (do <u>not</u> try to actually calculate its value).

Q4 A random variable, X, following the semicircle distribution has probability density function:

$$f(x) = \begin{cases} \frac{2}{\pi}\sqrt{1-x^2} & \text{when } x \in (-1,1) \\ 0 & \text{otherwise} \end{cases}$$

You may assume the knowledge that the semicircle distribution has:

$$\mathbb{E}[X] = 0, \operatorname{Var}(X) = \frac{1}{4} \text{ and } \mathbb{E}[X^4] = \frac{1}{8}$$

We are interested in the behaviour of an estimator $\hat{\mu}_n$ of the parameter $\mu = \mathbb{E}[X^2]$ found via Monte Carlo.

- **4.1** (i) Assume you have *n* Monte Carlo simulations $\{x_1, \ldots, x_n\}$ from the semicircle distribution. Write down the equation for the Monte Carlo estimator, $\hat{\mu}_n$, as well as the variance of $\hat{\mu}_n$ as a function of *n*.
 - (ii) How large should n be so that a 95% confidence interval around $\hat{\mu}_n$ has size ± 0.1 ?
- **4.2** The estimator $\hat{\mu}_n$ requires simulations from the semicircle distribution.
 - (i) Show that the Uniform distribution on the interval [-1, 1] can be used as a proposal distribution in a rejection sampler to produce samples from the semicircle distribution.
 - (ii) Write down in full detail the rejection sampling algorithm to produce simulations of X in this setting, and demonstrate the algorithm by using the following simulations (in the order provided):

-0.33, 0.82, -0.42 are simulations from a Uniform(-1, 1)0.75, 0.61, 0.01 are simulations from a Uniform(0, 1)

4.3 Assume the most computationally costly part is generation of Uniform simulations.

Your friend notices that you could just use the Uniform(-1, 1) proposals directly in an importance sampler to estimate μ without needing a second Uniform to test for acceptance/rejection.

You run the importance sampler using 1000 Uniform(-1, 1) simulations and calculate the weights $\{w_i\}_{i=1}^{1000}$. You find,

$$\sum_{i=1}^{1000} w_i = 1000.9 \text{ and } \sum_{i=1}^{1000} w_i^2 = 1082.4$$

By finding the effective sample size, calculate how many more Uniform simulations (in total) a rejection sampler would need in order to achieve approximately the same accuracy as this importance sampling estimate.