

EXAMINATION PAPER

Examination Session: May/June

2022

Year:

Exam Code:

MATH2707-WE01

Title:

Markov Chains II

Time:	2 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators
		is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.				
	Students must use the mathematics specific answer book.				

Revision:

r I	Ē	ag	jē	'n	ū	m	be	ər	-	-	-	-	-	-	-	
						2	2	oi	f	5						
i.																
L	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

SECTION A

Q1 Suppose P is a stochastic matrix

$$P = \begin{bmatrix} p_{11} & \frac{1}{3} & 0 & 0 & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ \frac{2}{3} & 0 & \frac{1}{3} & 0 & 0 \\ 0 & p_{42} & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

- (a) What must the values of p_{11} and p_{42} be?
- (b) What are the associated communicating classes?
- (c) Which of the associated communicating classes are recurrent?
- (d) Describe the set of stationary distributions of P.

Page number	Exam code
3 of 5	MATH2707-WE01
I I I	

Q2 Let $(X_n)_{n\geq 0}$ be the Markov chain that takes steps like a knight moving uniformly at random on the (unusually shaped) chess board in Figure 1, and suppose $X_0 = x$, where x is the labelled square in Figure 1. Let $T_x = \inf\{n > 0 \mid X_n = x\}$ be the first return time to x. What is $\mathbb{E}_x T_x$?

Hint: The moves a knight is possibly allowed to make are illustrated in Figure 2. The knight cannot make a move that would leave the board.

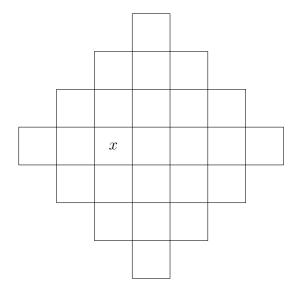


Figure 1: Unusually shaped chess board for problem Q2.

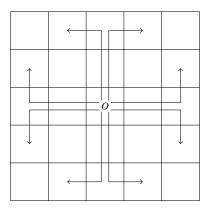
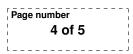


Figure 2: For problem **Q2**: the possible moves of a knight starting at the square labelled o are indicated by arrows.



SECTION B

- **Q3** Consider a Markov chain $(X_n)_{n\geq 0}$ on a finite state space *I*. Carefully prove or disprove the following statements.
 - **3.1** All states in the same communicating class have the same period.
 - **3.2** Suppose $(X_n)_{n\geq 0}$ is irreducible and periodic with period 2. Let P be the transition matrix of $(X_n)_{n\geq 0}$. Then -1 is an eigenvalue of P.

Q4 4.1 Consider the set \mathcal{P} of transition matrices for which the associated diagram is Figure 3, i.e., transition matrices for which all non-diagonal entries indicated by arrows in Figure 3 are positive, and non-diagonal entries are zero if there is no arrow. Any diagonal entry is also permitted to be positive. Give an example of a transition matrix $P \in \mathcal{P}$ such that the stationary distribution π of a Markov chain with transition matrix P is

$$\begin{bmatrix} \pi_A & \pi_B & \pi_C & \pi_D & \pi_E \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{1}{10} & \frac{1}{5} & \frac{1}{10} & \frac{2}{5} \end{bmatrix}.$$

You must explicitly write P with each entry expressed as an explicit number.

- **4.2** Let $(X_n)_{n\geq 0}$ be a Markov chain on $I = \mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$, let $0 < \tilde{p} < \frac{1}{2}$, and suppose the non-zero entries of the transition matrix P are:
 - $p_{0,0} = 1 2\tilde{p}$,
 - if $i \ge 0$, then $p_{i,i+1} = \tilde{p}$ and $p_{i+1,i} = 1 \tilde{p}$,
 - if $i \leq 0$ then $p_{i,i-1} = \tilde{p}$ and $p_{i-1,i} = 1 \tilde{p}$.
 - (a) Is this Markov chain transient or recurrent? You must justify your answer.
 - (b) What is the long-run fraction of time this Markov chain spends at the state 0?

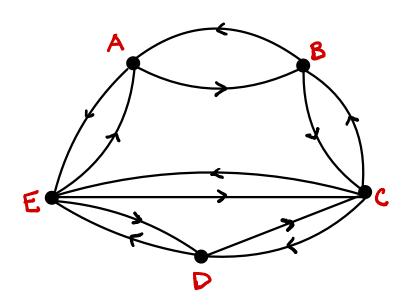


Figure 3: Figure for Problem Q4, part 4.1