

EXAMINATION PAPER

Examination Session: May/June

2022

Year:

Exam Code:

MATH3011-WE01

Title:

Analysis III

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.		
	Students must use the mathematics specific answer book.		

Revision:

SECTION A

Q1 1.1 (i) Let $A \subseteq \mathbb{R}$. Define the outer measure of A, denoted $m^*(A)$. (ii) Let $y \in \mathbb{R}$ and $B \subseteq \mathbb{R}$. Prove that

$$m^*((A - y) \cup B) \le m^*(A) + m^*(B).$$

1.2 Let $E \subseteq \mathbb{R}$ be measurable. Let $y \in \mathbb{R}$. Prove that the set y + E is measurable and that

$$m(E) = m(y+E),$$

where m denotes the Lebesgue measure.

Q2 Let $E \subseteq \mathbb{R}$ be measurable.

- **2.1** State what it means for an extended real-valued function $f : E \to \mathbb{R} \cup \{\infty\}$ to be measurable.
- **2.2** By using the fact that the collection of measurable sets in \mathbb{R} is an algebra, prove that any finite intersection of measurable sets is measurable.
- **2.3** For a finite family $\{f_k\}_{k=1}^n$ of measurable functions $f_k : E \to \mathbb{R}$, we define the function $g : E \to \mathbb{R}$ as

$$g(x) = \min\{f_1, f_2, \dots, f_n\}(x) = \min\{f_1(x), f_2(x), \dots, f_n(x)\}.$$

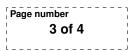
Prove that the function g is measurable.

- **Q3** Let $E \subset \mathbb{R}$ be measurable and let $1 \leq p < \infty$.
 - **3.1** State the definition of $L^p(E)$.
 - **3.2** Let $f \in L^1(E) \cap L^3(E)$. Is it true that $f \in L^2(E)$? Justify your response.
 - **3.3** Suppose that $(f_k)_{k\in\mathbb{N}}$ is a sequence of functions in $L^2(E)$ that converges to $f \in L^2(E)$. Does $(f_k)_{k\in\mathbb{N}}$ converge in measure to f? Justify your response.
- **Q4** Let *H* be an inner product space with inner product $\langle \cdot, \cdot \rangle$. Let the norm derived from $\langle \cdot, \cdot \rangle$ be denoted by $\|\cdot\|$.
 - **4.1** Prove that for any $x, y \in H$,

$$||x - y||^{2} = ||x||^{2} - 2\operatorname{Re}(\langle x, y \rangle) + ||y||^{2},$$

where $\operatorname{Re}(z)$ denotes the real part of $z \in \mathbb{C}$.

- **4.2** State and prove Bessel's Inequality for a Hilbert space H and an orthonormal set $U \subset H$. (You may use the expression given in part **4.1**).
- **4.3** State the additional assumptions that are required on U in order to achieve equality.



SECTION B

- **Q5** 5.1 Let $n \in \mathbb{N}$ and $(f_n)_n$ be a sequence of functions, $f_n : \mathbb{R} \to \mathbb{R}$. State what it means that the sequence $(f_n)_n$ converges uniformly to a function $f : \mathbb{R} \to \mathbb{R}$.
 - **5.2** For $n \in \mathbb{N}$, let

$$g_n(x) = \frac{1}{n^{1/2}} \cdot \chi_{[n,\infty)}(x), \quad x \in \mathbb{R}.$$

(i) Prove that the sequence of functions $(g_n)_n$ converges uniformly to the function

$$g(x) = 0, \quad x \in \mathbb{R}.$$

- (ii) Does Fatou's Lemma apply to the sequence of functions $(g_n)_n$? If so, then state the result of Fatou's Lemma for the sequence of functions $(g_n)_n$ given above. If not, then explain why not.
- (iii) Does the Monotone Convergence Theorem apply to the sequence of functions $(g_n)_n$? If so, then state the result of the Monotone Convergence Theorem for the sequence of functions $(g_n)_n$ given above. If not, then explain why not.

Q6 Let $E \subseteq \mathbb{R}$ be measurable.

- **6.1** State what it means for a function $f: E \to \mathbb{R}$ to be integrable.
- 6.2 State the Lebesgue Dominated Convergence Theorem.
- **6.3** Prove the following claim: if $f : \mathbb{R} \to \mathbb{R}$ is non-negative and integrable, then

$$\lim_{n \to \infty} \int_{1-\sqrt{n}}^{1+\sqrt{n}} f = \int_{\mathbb{R}} f.$$

6.4 Consider the sequence of functions $(f_k)_k, k \in \mathbb{N}$, where $f_k : \mathbb{R} \to \mathbb{R}$ is given by

$$f_k(x) = k \cdot \chi_{[0,1/k]}(x).$$

Does the Lebesgue Dominated Convergence Theorem apply to the sequence $(f_k)_k$? Give a full justification of your response.

Q7 Let $N \in \mathbb{N}$. For $k \in \{1, \ldots, N\}$, let X_k be normed linear spaces with corresponding norms denoted by $\|\cdot\|_{X_k}$. Consider the space

Exam code

MATH3011-WE01

$$Z = \bigcap_{k=1}^{N} X_k$$

where we assume that all the X_k have the same operations of addition and scalar multiplication so that Z is a linear space. Define the function $\|\cdot\|_Z : Z \to \mathbb{R}$ as

$$||w||_Z = \sum_{k=1}^N ||w||_{X_k}, \quad w \in Z.$$

- **7.1** Prove that $\|\cdot\|_Z$ defines a norm on Z.
- **7.2** Give an explicit example of $(Z, \|\cdot\|_Z)$ to show that it is not always a Banach space and justify your response briefly.
- **7.3** Let $E = [0, \pi]$. Let $X_1 = L^2(E)$ where $\|\cdot\|_{X_1}$ is the usual L^2 -norm, $X_2 = L^3(E)$ where $\|\cdot\|_{X_2}$ is the usual L^3 -norm, and $X_3 = L^6(E)$ where $\|\cdot\|_{X_3}$ is the usual L^6 -norm. For $k \in \mathbb{N}$, consider the functions

$$g_k(x) := \frac{(\sin(\sqrt{k}x))^3}{k^{7/6}} \cdot \chi_{[0,\pi/\sqrt{k}]}.$$

Does the sequence $(g_k)_k$ converge in $Z = L^2(E) \cap L^3(E) \cap L^6(E)$ with respect to $\|\cdot\|_Z$? Give a full justification of your response.

$\mathbf{Q8}$

8.1 Prove that the function

$$\langle f,g\rangle = \int_{\mathbb{R}} f\overline{g}$$

is well defined for $f, g \in L^2(\mathbb{R})$ and gives rise to an inner product on $L^2(\mathbb{R})$.

8.2 Let the norm derived from $\langle \cdot, \cdot \rangle$ be denoted by $\|\cdot\|$. Let $E \subset \mathbb{R}$ be measurable. Let $S \subset L^2(\mathbb{R})$ be the space of functions that vanish almost everywhere in $\mathbb{R} \setminus E$. For $f \in L^2(\mathbb{R})$, prove that

$$\|f - g\| \ge \|f - \chi_E \cdot f\|$$

for all $g \in S$.