

EXAMINATION PAPER

Examination Session:	Year:		Exam Code:			
May/June	2022	<u> </u>	N	MATH3031-WE01		
<u> </u>						
Title:						
Number Theory III						
Time:	3 hours	3 hours				
Additional Material prov	ided:					
Materials Permitted:						
		Г				
Calculators Permitted:	Yes	Models Permitted: Casio FX83 series or FX85 series.				
	·					
Instructions to Candidates: Answer all questions.						
		ection A is worth 40% and Section B is worth 60%. Within				
		each section, all questions carry equal marks.				
	Students mu	Students must use the mathematics specific answer book.				
L	I			Revision:		

SECTION A

- **Q1** Let K be a number field and write $R = \mathcal{O}_K$ for its ring of integers.
 - (a) Let I be a non-zero proper ideal in R. Show that $I \cap \mathbb{Z}$ is a non-zero proper ideal of \mathbb{Z} .
 - (b) Show that there exist infinitely many prime ideals in R. (Here you can use without proof the fact that there exist infinitely many primes in \mathbb{Z}).
- **Q2** (a) Let $\alpha := \frac{1}{3^{4/3}} \frac{1}{3^{2/3}}$, where $\frac{1}{3^{4/3}}, \frac{1}{3^{2/3}} \in \mathbb{R}$. Show that α is an algebraic number. Further, give an $m \in \mathbb{Z}$ such that $m\alpha \in \overline{\mathbb{Z}}$.
 - (b) Write $\beta := (5 + \sqrt{17})^{1/3} + (5 \sqrt{17})^{1/3}$, where $(5 + \sqrt{17})^{1/3}$, $(5 \sqrt{17})^{1/3} \in \mathbb{R}$. Show that β is an algebraic integer and find the degree $[\mathbb{Q}(\beta):\mathbb{Q}]$. Justify your answer.
- **Q3** (a) Find the fundamental unit of $\mathbb{Q}(\sqrt{10})$.
 - (b) Find two distinct solutions $(x, y) \in \mathbb{N} \times \mathbb{N}$, x, y > 1, to the equation

$$x^2 - 10y^2 = 1.$$

- **Q4** Let $K = \mathbb{Q}(\sqrt{-29})$ and $R = \mathcal{O}_K = \mathbb{Z}[\sqrt{-29}]$.
 - (a) Find all the prime ideals of R of norm 3 or of norm 11, respectively.
 - (b) Find an element $\alpha \in R$ of norm 33 and use this to show that there is a prime ideal \mathfrak{p} of R of norm 3 and a prime ideal \mathfrak{q} of R of norm 11 such that

$$[\mathfrak{p}]=[\mathfrak{q}]$$

in the class group of R.

SECTION B

- **Q5** Let p be an odd prime and set $\zeta := e^{\frac{2\pi i}{p}} \in \mathbb{C}$. We set $K := \mathbb{Q}(\zeta)$.
 - (a) Show that the minimal polynomial of ζ over \mathbb{Q} is $\Phi(x) = x^{p-1} + x^{p-2} + \ldots + x + 1$.
 - (b) Show that $p = u(1 \zeta)^{p-1}$ for some $u \in \mathcal{O}_K^{\times}$.
 - (c) Show that 1ζ is an irreducible element in \mathcal{O}_K .
 - (d) Is there a field extension F of K with [F:K] finite, such that the element $1-\zeta$ is not an irreducible element as an element in \mathcal{O}_F ? Justify your answer.
- **Q6** (a) Let p and q be two distinct odd primes. Given that there exists at least one solution, find how many solutions there are to the equation

$$a^2 + 2b^2 = p^7 q^9,$$

- with a and b in \mathbb{Z} . Here you may use without proof the fact that the ring $\mathbb{Z}[\sqrt{-2}]$ is a U.F.D.
- (b) Let $K = \mathbb{Q}(\sqrt{-29})$ and write $R = \mathcal{O}_K$ for its ring of integers. Show that there exist non-principal ideals of norm 33 in R. Find one of them by giving generators for it.

- **Q7** (a) Let $K = \mathbb{Q}(\theta)$, where $\theta^3 \theta 3 = 0$. Compute the discriminant of $\mathbb{Z}[\theta]$.
 - (b) Let $K = \mathbb{Q}(\sqrt{7})$ and $R = \mathcal{O}_K = \mathbb{Z}[\sqrt{7}]$. Find a generating basis and compute the discriminant of the ideal

$$I = (2 + \sqrt{7})_R.$$

Q8 Let
$$K = \mathbb{Q}(\sqrt{-91})$$
 and $R := \mathcal{O}_{-91} = \mathbb{Z}[\frac{1+\sqrt{-91}}{2}]$.

- (a) Find the class number of K. You may use the Minkowski bound, given by $B_K = \left(\frac{4}{\pi}\right)^t \frac{n!}{n^n} \sqrt{|\Delta_K|}$.
- (b) Let $\alpha = x + \sqrt{-91} \in R$. Find three prime ideals P_1, P_2, P_3 of R such that any prime ideal of R that divides both (α) and $(\overline{\alpha})$ must be one of the three prime ideals P_1, P_2 or P_3 .
- (c) Find all the solutions $(x,y) \in \mathbb{Z}^2$ (if any) to the equation

$$x^2 + 91 = y^3.$$

(Hint: Use the previous parts.)