

EXAMINATION PAPER

Examination Session: May/June

2022

Year:

Exam Code:

MATH3041-WE01

Title:

Galois Theory III

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.		
	Students must use the mathematics specific answer book.		

Revision:

SECTION A

- **Q1** 1.1 List all irreducible quadratic monic polynomials in $\mathbb{F}_3[T]$.
 - **1.2** How many irreducible cubic monic polynomials are there in $\mathbb{F}_3[T]$? (Justify your answer.)
- **Q2** 2.1 Find the degree $[\mathbb{Q}(\sqrt[5]{3}, \sqrt[7]{5}) : \mathbb{Q}].$
 - **2.2** Prove that the polynomial $T^7 5$ is irreducible in the ring of polynomials $\mathbb{Q}(\sqrt[5]{3})[T]$.
- **Q3** Which of the following field extensions L/K are Galois? (Justify your answer.):
 - **3.1** $K = \mathbb{Q}(i), L = K(\sqrt[4]{7}, \sqrt[4]{11});$
 - **3.2** $K = \mathbb{R}(X^3), L = \mathbb{R}(X);$
 - **3.3** $K = \mathbb{F}_7(X^3), L = \mathbb{F}_7(X);$
 - **3.4** $K = \mathbb{F}_3(X^3), L = \mathbb{F}_3(X).$
- **Q4** 4.1 Suppose K is a finite field of characteristic p. Prove that the map $\sigma: K \to K$ such that for any $a \in K$, $\sigma(a) = a^p$, is an automorphism of the field K.
 - **4.2** Let $k = \mathbb{F}_2(\alpha)$, where α is a root of $g(T) = T^4 + T + 1 \in \mathbb{F}_2[T]$. Find all irreducible factors of g(T) in the ring of polynomials k[T].

SECTION B

- **Q5 5.1** (a) Suppose the characteristic of a field K does not equal 2 and L/K is a field extension of degree 2. Prove that there is an $a \in K$ such that $L = K(\sqrt{a})$.
 - (b) Give an example of a quadratic field extension F/E such that F does not appear in the form $E(\sqrt{b})$, where $b \in E$.
 - **5.2** Find the Galois group of the polynomial $F(X) = X^3 2t^2X t^3 \in K[X]$, where
 - (a) $K = \mathbb{Q}(t);$
 - (b) $K = \mathbb{F}_5(t)$.

(In both cases K is the field of rational functions in the variable t with coefficients in \mathbb{Q} and \mathbb{F}_5 , respectively.)

- **Q6** For any $n \in \mathbb{N}$, let $\zeta_n \in \mathbb{C}$ be an *n*-th primitive root of unity.
 - **6.1** (a) Prove that $\{\zeta_7^m \mid m = 1, 2, 3, 4, 5, 6\}$ is a \mathbb{Q} -basis for $\mathbb{Q}(\zeta_7)$.
 - (b) Find the rational numbers a_i , where $1 \leq i \leq 6$, such that

$$\sqrt{-7} = a_1\zeta_7 + a_2\zeta_7^2 + a_3\zeta_7^3 + a_4\zeta_7^4 + a_5\zeta_7^5 + a_6\zeta_7^6$$

- **6.2** Let $L = \mathbb{Q}(\zeta_{28})$. Prove that $\sqrt{7} \in L$ and find the structure of the group $\operatorname{Gal}(L/\mathbb{Q}(\sqrt{7}))$.
- **6.3** Let $M = \mathbb{Q}(\zeta_{288})$. How many subfields N such that $[N : \mathbb{Q}] = 2$ are there in M? List all these fields N in the form $\mathbb{Q}(\sqrt{d})$ where $d \in \mathbb{Z}$.
- **6.4** Find the degree $[\mathbb{Q}(\zeta_{19} + \zeta_{19}^7 + \zeta_{19}^{11}) : \mathbb{Q}].$

- **Q7** Let $K = \mathbb{Q}(T)$ be the field of rational functions in the variable T with coefficients in \mathbb{Q} . Let L be a minimal normal over K field extension of $K(\sqrt[4]{T})$.
 - **7.1** Find the field L and explain why L is Galois over K. Find generators and relations for the group $\operatorname{Gal}(L/K)$.
 - **7.2** List all subgroups H of order 4 in G and find the corresponding subfields L^H in L.
 - **7.3** List all subgroups \widetilde{H} of order 2 in G and find the corresponding subfields $L^{\widetilde{H}}$ in L.
- **Q8** Let $K = \mathbb{Q}(\Theta)$, where $\Theta = \sqrt{1 + \sqrt{-5}}$.
 - **8.1** Find a minimal Galois extension L of \mathbb{Q} containing K.
 - **8.2** Find generators and relations for the group $\operatorname{Gal}(L/\mathbb{Q})$.
 - **8.3** Prove that $\sqrt{-30} \in L$ and find $\operatorname{Gal}(L/\mathbb{Q}(\sqrt{-30}))$.
 - **8.4** Prove the existence of $A \in \mathbb{Q}(i, \sqrt{30})$ such that $L(i) = \mathbb{Q}(i)(\sqrt[4]{A})$. Find A.