

EXAMINATION PAPER

Examination Session: May/June

2022

Year:

Exam Code:

MATH3231-WE01

Title:

Solitons III

Time:	3 hours		
Additional Material provided:			
Materials Permitted:			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.	

Instructions to Candidates:	Answer all questions.			
	Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.			

Revision:

SECTION A

Q1 Compute the dispersion relation for the equation

$$u_t + u_{xxx} + au_{xxxx} + u_{xt} = 0 ,$$

where a is a real constant. For which values of a is there physical dissipation? In the case where there is no dissipation, physical or unphysical, compute the phase velocity and group velocity.

- **Q2** 2.1 If f = f(x, t) is a function, define and calculate the Hirota derivative $D_x D_t(f, f)$.
 - **2.2** If f satisfies $D_x D_t(f, f) = 2$, find an equation that is satisfied by the function $u = \log f$.
 - **2.3** For what values of the constants a, b and c does $f(x,t) = \cosh(ax + bt + c)$ satisfy $D_x D_t(f, f) = 2$?
- **Q3 3.1** A functional F[u] is given by

$$F[u] = \int_{-\infty}^{+\infty} f(u, u_x) \, dx \, .$$

Define the functional derivative $\delta F/\delta u$, and derive an expression for this quantity in terms of $\partial f/\partial u$ and $\partial f/\partial u_x$. The boundary conditions on u(x) are that u and u_x tend to zero as $x \to \pm \infty$.

3.2 Compute $\delta F/\delta u$ in the cases

(i)
$$f(u, u_x) = u^2$$
; (ii) $f(u, u_x) = u^2 u_x$.

- **3.3** Your answer to **3.2**(ii) might seem surprisingly simple. Explain this fact by considering the value taken by F[u] in this case.
- Q4 4.1 Use the cyclic property of the trace to show that if a system is described by a matrix Lax pair equation

$$L_t = [M, L]$$

then the quantity $Tr(L^2)$ is conserved, where Tr denotes the trace.

4.2 If L and M are given in terms of two functions p(t) and q(t) as

$$L = \begin{pmatrix} p & q \\ q & -p \end{pmatrix}$$
, $M = \begin{pmatrix} 0 & -q \\ q & 0 \end{pmatrix}$,

find the equations of motion for p and q that follow from the Lax pair equation. Calculate $Tr(L^2)$, and use your equations of motion to show explicitly that it is conserved in this case.

SECTION B

Q5 The field u = u(x, t) has energy

$$E = \int_{-\infty}^{+\infty} dx \left[\frac{1}{2}u_t^2 + \frac{1}{2}u_x^2 + 2u^2(1-u^2)^2 \right] .$$

- **5.1** Use the Bogomol'nyi argument to find a lower bound for the energy in terms of the boundary values of the field u as $x \to \pm \infty$.
- **5.2** Now assume that $u \to 1$ as $x \to -\infty$ and $u \to 0$ as $x \to +\infty$. Find a numerical value for the lower bound of the energy. Write down the conditions that u must satisfy to saturate this bound, and find the function u that saturates the bound.
- Q6 A field *u* satisfies the sine-Gordon equation

$$u_{tt} - u_{xx} + \sin u = 0$$

and has kinetic energy T and potential energy V given by

$$T = \int_{-\infty}^{+\infty} dx \, \frac{1}{2} u_t^2$$
$$V = \int_{-\infty}^{+\infty} dx \, \left(\frac{1}{2} u_x^2 + 1 - \cos u\right) \, dx$$

- **6.1** Which boundary conditions should u obey to ensure that the total energy E = T + V be finite?
- 6.2 Show that with these boundary conditions the total energy is conserved.
- 6.3 It is given that

$$u(x,t) = 4 \arctan \left[\cot \varphi \cdot \frac{\sin(t \sin \varphi)}{\cosh(x \cos \varphi)} \right] ,$$

is a solution of the sine-Gordon equation, where $\varphi \in (0, 2\pi)$ is a constant. Calculate the kinetic energy T and the potential energy V at times $t = n\tau/4$, where $\tau = 2\pi/\sin\varphi$ and n = 0, 1, 2, 3, 4. You may use without proof the identities

$$\frac{d}{dx}\arctan x = \frac{1}{1+x^2} , \quad \frac{d}{dx}\tanh x = \frac{1}{\cosh^2 x} = \operatorname{sech}^2 x .$$

Q7 7.1 If M is a differential operator acting on functions which decay as $x \to \pm \infty$, define M^{\dagger} , the adjoint of M, with respect to the inner product

$$(\phi, \chi) = \int_{-\infty}^{\infty} \phi^*(x) \chi(x) \, dx \, .$$

Exam code

MATH3231-WE01

What does it mean for M to be (a) symmetric (self-adjoint) or (b) antisymmetric (skew) with respect to this inner product?

- **7.2** If N is a second differential operator also acting on functions which decay as $x \to \pm \infty$, show that $(MN)^{\dagger} = N^{\dagger}M^{\dagger}$.
- **7.3** Let D = d/dx and u(x) be a real function decaying as $x \to \pm \infty$. Classify each of the following differential operators as either symmetric, antisymmetric, or neither, giving reasons in each case:

$$B_1 = D$$
, $B_2 = u$, $B_3 = uD$, $B_4 = uD + Du$, $L = D^2 + u$.

- 7.4 If B is another differential operator and [L, B] is multiplicative (and real), with $L = D^2 + u$ as above, show that L commutes with the symmetric part of B. Explain briefly why this fact might be useful in searching for the equations of the KdV hierarchy.
- $\mathbf{Q8}$ Consider the Schrödinger equation

$$\left(-\frac{d^2}{dx^2} + V(x)\right)\psi(x) = k^2\psi(x)$$

where $V(x) = -b\delta(x)$, b is real, and $\delta(x)$ is the Dirac delta function.

- 8.1 By integrating the equation from $-\epsilon$ to $+\epsilon$ and taking the limit $\epsilon \to 0$, find the matching condition determining the discontinuity in $\psi'(x)$ at x = 0. You can assume that $\psi(x)$ itself is everywhere continuous.
- **8.2** For $k^2 > 0$, solve the equation for x < 0 and x > 0 and then apply your matching condition, and the continuity of ψ at x = 0, to fix the coefficients of the solution for x < 0 in terms of those for x > 0. Use this to find a scattering solution, normalised so that the coefficient of e^{ikx} for x < 0 is equal to 1. What are the corresponding reflection and transmission coefficients?
- 8.3 The potential V(x) is now replaced by $W(x) = c\theta(x)$, where c > 0 is real and $\theta(x)$ is the Heaviside step function, equal to 1 for x > 0 and zero for $x \le 0$. Derive the matching condition at x = 0 in this case, and find the general solution of the equation as in part 8.2. For what possibly *c*-dependent values of $k^2 > 0$ does this new equation have a solution which tends to zero as $x \to +\infty$?