

EXAMINATION PAPER

Title: Stochastic Processes III Time: Additional Material provided: Materials Permitted: Calculators Permitted: No Models Permitted: Use of electronic calculators is forbidden. Instructions to Candidates: Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.	Examination Session:	Year:		Exam Code:		
Stochastic Processes III Time: 3 hours Additional Material provided: Materials Permitted: Calculators Permitted: No Models Permitted: Use of electronic calculators is forbidden. Instructions to Candidates: Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.	May/June	2022	2	MATH3251-WE01		
Stochastic Processes III Time: 3 hours Additional Material provided: Materials Permitted: Calculators Permitted: No Models Permitted: Use of electronic calculators is forbidden. Instructions to Candidates: Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.						
Stochastic Processes III Time: 3 hours Additional Material provided: Materials Permitted: Calculators Permitted: No Models Permitted: Use of electronic calculators is forbidden. Instructions to Candidates: Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.						
Additional Material provided: Materials Permitted: Calculators Permitted: No Models Permitted: Use of electronic calculators is forbidden. Instructions to Candidates: Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.						
Additional Material provided: Materials Permitted: Calculators Permitted: No Models Permitted: Use of electronic calculators is forbidden. Instructions to Candidates: Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.						
Materials Permitted: Calculators Permitted: No Models Permitted: Use of electronic calculators is forbidden. Instructions to Candidates: Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.	Time:	3 hours				
Calculators Permitted: No Models Permitted: Use of electronic calculators is forbidden. Instructions to Candidates: Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.	Additional Material provid	ed:				
Instructions to Candidates: Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.	Materials Permitted:					
Instructions to Candidates: Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.			1			
Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.	Calculators Permitted:	No				
Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.						
Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.						
each section, all questions carry equal marks. Students must use the mathematics specific answer book.	Instructions to Candidates	' '				
Revision:		Students mu	ıst use the mathe	ematics specific answer book.		
Revision:						
Revision:						
Revision:						
Revision:						
Revision:						
				Revision:		

SECTION A

Q1 Suppose that $(Y_i)_{i\in\mathbb{N}}$ is a sequence of independent and identically distributed non-negative integer valued random variables and N is a non-negative integer valued random variable that is independent of $(Y_i)_{i\in\mathbb{N}}$. Define

$$S_N := \sum_{i=1}^N Y_i$$

and let G_N, G_{Y_1}, G_{S_N} be the generating functions of N, Y_1, S_N respectively; that is:

$$G_N(s) = \mathsf{E}(s^N) \;\;\; ; \;\;\; G_{Y_1}(s) = \mathsf{E}(s^{Y_1}) \;\;\; ; \;\;\; G_{S_N}(s) = \mathsf{E}(s^{S_N})$$

for all $s \in (0,1)$.

- (a) Prove that $G_{S_N}(s) = G_N(G_{Y_1}(s))$ for all $s \in (0,1)$.
- (b) Suppose that a fair coin (equally likely to land H or T) is tossed infinitely many times, and assume that the results of distinct tosses are independent. Let $(Y_i)_{i\in\mathbb{N}}$ be defined by setting $Y_i=1$ if the *i*th toss is a T and 0 otherwise. Let $N:=\min\{i\geq 1: Y_i=1\}$ be the first toss landing T and $S_N:=\sum_{i=1}^N Y_i$. Calculate

$$G_{S_N}(s) = \mathsf{E}(s^{S_N})$$

for $s \in (0, 1)$.

- (c) Calculate $G_N(G_{Y_1}(s))$ for $s \in (0,1)$, where N, Y_1 are distributed as in part (b). Do your answers for (b) and (c) contradict part (a)?
- **Q2** Let X_t be a continuous time Markov process on the state space $\mathcal{I} = \{1, 2, 3\}$ with Q-matrix

$$Q = \begin{pmatrix} -8 & 4 & 4\\ 2 & -6 & 4\\ 2 & 0 & -2 \end{pmatrix}$$

- (a) Find the characteristic polynomial of Q and identify the eigenvalues.
- (b) Compute $p_{2,3}(t)$ and evaluate $\lim_{t\to\infty} p_{2,3}(t)$.
- (c) Find the invariant distribution π of the process.
- **Q3** Suppose that $(Z_n)_{n\geq 0}$ is a time-homogeneous branching process with $Z_0\equiv 1$ and offspring distribution

$$p_k = P(Z_1 = k) = p^k(1-p)$$
 ; $k \ge 0$

for some $p \in (0,1)$. Let $\rho := \mathsf{P}(\cup_{n\geq 0} \{Z_n = 0\})$ be the extinction probability.

- (a) Calculate ρ (as a function of p) for $p \in (0, 1)$.
- (b) Show that $P(Z_n > 0) \le (\frac{p}{1-p})^n$ for all $n \ge 0$ and all $p \in (0,1)$.

In your answers you should clearly state and carefully apply any result(s) that you use.

Q4 Let N_t be a Poisson process with rate λ . Suppose $0 \le s < t$ and $0 \le m \le n$.

- (a) Compute the probability $P(N_t = n \mid N_s = m)$.
- (b) Compute the probability $P(N_s = m \mid N_t = n)$.

SECTION B

- Q5 A standard fair die is tossed repeatedly. Let T be the number of tosses until the sequence 3-2-1-3 is observed for the first time. Use the appropriate optional stopping theorem to find the expectation $\mathsf{E}(T)$. In your answer you should clearly state and carefully apply any result you use.
- **Q6** Let $(X_n)_{n\geq 0}$ and $(Y_n)_{n\geq 0}$ be independent simple symmetric random walks starting from $X_0 \equiv 1$ and $Y_0 \equiv -1$ respectively. That is,

$$X_n := 1 + \sum_{i=1}^n Z_i$$
 ; $Y_n := -1 + \sum_{i=1}^n W_i$

where $Z_1, W_1, Z_2, W_2 \dots$ are all independent, each taking values +1 with probability $\frac{1}{2}$ and -1 with probability $\frac{1}{2}$.

- **6.1** Let $T_0 := \min\{n \geq 0 : X_n = 0\}$ be the hitting time of 0 by $(X_n)_{n \geq 0}$. Using generating functions or otherwise, show that $\mathsf{P}(T_0 < \infty) = 1$.
- **6.2** Using coupling or otherwise, show that Y_n is stochastically dominated by X_n for all n > 0.
- **6.3** Define $(\tilde{X}_n, \tilde{Y}_n)_{n\geq 0}$ by letting $(\tilde{X}_n)_{n\geq 0}$ have the same distribution as $(X_n)_{n\geq 0}$ and given $(\tilde{X}_n)_{n\geq 0}$ and $\tilde{T}_0 = \min\{n\geq 0: \tilde{X}_n = 0\}$, setting

$$\tilde{Y}_n = \begin{cases} -\tilde{X}_n & \text{for } n \leq \tilde{T}_0\\ \tilde{X}_n & \text{for } n > \tilde{T}_0 \end{cases}$$

Show that this provides a coupling of (X_n, Y_n) for each n. Hence or otherwise show that the total variation distance $d_{TV}(X_n, Y_n)$ converges to 0 as $n \to \infty$.

In your answers you should clearly state and carefully apply any result(s) that you use.

Q7 Let X_t be a continuous time Markov process on a finite state space \mathcal{I} . Let Q be its Q-matrix and P_t be its transition matrices. Suppose $f: \mathcal{I} \to \mathbb{R}$ is a function. The matrices Q and P_t act on f as a column vector, namely the functions Qf and P_tf are defined by

$$Qf(x) = \sum_{y \in \mathcal{I}} Q_{x,y} f(y), \quad P_t f(x) = \sum_{y \in \mathcal{I}} p_{x,y}(t) f(y) \quad \text{for } x \in \mathcal{I}.$$

7.1 For t > 0 and $x \in \mathcal{I}$, define $u_t(x) = \mathsf{E}[f(X_t) \mid X_0 = x]$. Show that

$$\frac{d}{dt}u_t(x) = Qu_t(x) = \sum_{y \in \mathcal{I}} Q_{x,y}u_t(y).$$

- **7.2** The function f as above is called harmonic if $P_t f = f$ for every $t \ge 0$. Show that f is harmonic if and only if Qf = 0.
- **7.3** Suppose f is a harmonic function and define $M_t = f(X_t)$. Let $\mathcal{F}_t = \sigma(X_s; s \le t)$ be the sigma-algebra generated by the process up to time t. Show that M_t is a martingale with respect to filtration \mathcal{F}_t , that is,

$$\mathsf{E}[M_t \mid \mathcal{F}_s] = M_s \quad \text{for } s < t.$$

- **Q8** Let B_t be standard Brownian motion.
 - **8.1** Let $m_t = \min\{B_s; s \leq t\}$ be the minimum of Brownian motion from time 0 to time t. Find a simple expression for

$$P(m_t < a)$$

that only involves the distribution of B_t at time t.

8.2 The zero set of Brownian motion is the set $Z = \{t \ge 0 : B_t = 0\}$. The measure of the zero set is

$$|Z| = \int_0^\infty \mathbf{1}_{\{B_t = 0\}} dt.$$

Prove that |Z| = 0 almost surely.

8.3 A local maximum of Brownian motion is a time t such that for some $\delta > 0$, $B_s \leq B_t$ for every $s \in (t - \delta, t + \delta)$. Prove that, almost surely, Brownian motion has a local maximum in every interval [a, b] of positive length.

Hint: Recall that almost surely, Brownian motion is not monotone on any interval.