

EXAMINATION PAPER

Examination Session: May/June

2022

Year:

Exam Code:

MATH3341-WE01

Title:

Bayesian Statistics III

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: Casio FX83 series or FX85 series.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.
	Students must use the mathematics specific answer book.

Revision:

SECTION A

Q1 Consider observables $\{x_i\}_{i=1}^n$ independently sampled from a sampling distribution with mass function

$$Pn(x_i|\theta) = \frac{\theta^{x_i} \exp(-\theta)}{x_i!} \, 1(x_i \in \{0, 1, 2, ...\}),$$

with unknown parameter $\theta \in (0, \infty)$.

- (a) Compute Jeffreys' prior for θ up to a multiplicative constant.
- (b) Assume that you have only one observation $x_1 = 0$ in your sample. Can the Jeffreys' prior computed in part (a) be used to perform statistical inference?
- **Q2** In a Bayesian network, consider a directed acyclic graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$. Let $\mathcal{R} = \mathcal{V} \setminus \{w\}$, and let Bl(w) denote the Markov blanket of vertex w.
 - (a) Show that

$$f(w|\mathcal{R}) = \frac{\prod_{u \in \mathcal{V}} f(u|\operatorname{pa}(u))}{\int \prod_{u \in \mathcal{V}} f(u|\operatorname{pa}(u)) \, \mathrm{d}w}$$

(b) Continue part (a) and prove that

$$f(w|\mathcal{R}) = f(w|\mathrm{Bl}(w))$$

Hint: You can use the factorization

$$\prod_{u \in \mathcal{V}} f\left(u | \mathrm{pa}\left(u\right)\right) = f\left(w | \mathrm{pa}\left(w\right)\right) \prod_{u \in \mathrm{ch}(w)} f\left(u | \mathrm{pa}\left(u\right)\right) \prod_{x \in \mathcal{X}} f\left(x | \mathrm{pa}\left(x\right)\right)$$

where $\mathcal{X} = \mathcal{V} \setminus \{w, ch(w)\}$ and ch(w) are the children of w.

Q3 Let $y = (y_1, ..., y_n)$ be a sequence of *n* observables sampled from a Geometric sampling distribution $y_i | \theta \stackrel{\text{iid}}{\sim} \text{Ge}(\theta)$ with mass function

$$f(t|\theta) = \begin{cases} (1-\theta)^t \theta & \text{if } t \in \{0, 1, 2, ...\} \\ 0 & \text{otherwise} \end{cases},$$

and unknown parameter $\theta \in [0, 1]$. Assume that n = 6 and $y_* = \sum_{i=1}^n y_i = 3$. Assume that the (overall) prior distribution of θ is a Uniform distribution. Consider that you wish to assess whether $\theta \leq 1/3$ or otherwise with a Bayesian hypothesis test.

- (a) Partition the (overall) prior distribution of θ according to the pair of hypotheses under consideration.
- (b) Perform the Bayesian hypothesis test under consideration according to Jeffreys' scale rule, and write down the strength of evidence.

Hint-1: The Beta distribution is denoted Be(a, b) and has pdf

$$f(x|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1} \ 1(x \in [0,1]).$$

CONTINUED

B_{01}	Strength of evidence
$(1, +\infty)$	\mathbf{H}_0 is supported
$(10^{-1/2}, 1)$	Evidence against H_0 : not worth more than
	a bare mention
$(10^{-1}, 10^{-1/2})$	Evidence against H_0 : substantial
$(10^{-3/2}, 10^{-1})$	Evidence against H_0 : strong
$(10^{-2}, 10^{-3/2})$	Evidence against H_0 : very strong
$(0, 10^{-2})$	Evidence against H_0 : decisive

Hint-2: Jeffreys' scale rule

Q4 Let $f(\cdot)$ and $g(\cdot)$ be probability densities such that there is a constant M > 1 satisfying $f(x) \leq Mg(x)$ for all $x \in \mathbb{R}$. Consider the following recursive algorithm.

Algorithm:

step 1. Draw x from distribution with pdf $g(\cdot)$

step 2. Draw u from the continuous uniform distribution U(0,1)

step 3. If
$$\left(u \leq \frac{f(x)}{Mg(x)}\right)$$
 then
return x
else

- go to step 1
- (a) Prove that the algorithm above is valid for sampling from a distribution with pdf $f(\cdot)$.
- (b) Prove that the acceptance rate of the above algorithm is

$$P(\text{accept}) = \frac{1}{M}.$$

What does this result suggest about how to choose $g(\cdot)$?

SECTION B

Q5 Consider a sequence of observables $\{y_i\}_{i=1}^n$ drawn independently from a sampling distribution which admits density

$$f(t|\theta) = \begin{cases} \sqrt{\frac{2}{\pi}} t^2 \exp\left(-\frac{1}{2}\theta t^2 + \frac{3}{2}\log\left(\theta\right)\right) & \text{if } t > 0\\ 0 & \text{otherwise} \end{cases}$$

labelled by an unknown parameter $\theta \in (0, \infty)$.

Hint-1: The Gamma distribution is denoted Ga(a, b) and has pdf

$$f(x|a,b) = \frac{b^a}{\Gamma(a)} x^{a-1} \exp(-bx) \mathbf{1} (x \ge 0)$$

with $a \in (0, \infty)$, $b \in (0, \infty)$, and mean $E(x|a, b) = \frac{a}{b}$.

- (a) Show that the sampling distribution is an exponential family of distributions. Compute the minimal sufficient statistic.
- (b) Derive a prior probability density function for θ which is conjugate to the likelihood. State the name of the distribution along with its parameters.
- (c) Consider (without proof) that the posterior distribution of θ is

$$\theta | y \sim \operatorname{Ga}\left(a^*, b^*\right)$$

with $a^* = \frac{3}{2}n + a$ and $b^* = \frac{1}{2}\sum_{i=1}^n y_i^2 + b$. Compute the posterior predictive density function of a future outcome $z = y_{n+1}$.

(d) Compute the Bayesian point estimator $\hat{\theta}$ for θ under the loss function

$$\ell(\delta,\theta) = w\frac{1}{n}\sum_{i=1}^{n} (y_i - \delta)^2 + (1 - w)(\delta - \theta)^2$$

where $w \in (0, 1)$ is a known constant. In particular, show that

$$\hat{\theta} = w\bar{y} + (1-w)\frac{a^*}{b^*}$$

Hint-2: You may use without proof that $\sum_{i=1}^{n} (y_i - \delta)^2 = \sum_{i=1}^{n} (y_i - \bar{y})^2 + n (\delta - \bar{y})^2$, where \bar{y} is the arithmetic average of $\{y_i\}$.

Exam code MATH3341-WE01

Q6 Consider the Bayesian model

$$\begin{cases} y_i | \theta_i & \stackrel{\text{ind.}}{\sim} \operatorname{Pa}\left(L, \theta_i\right), \ i = 1, ..., n\\ \theta_i & \stackrel{\text{iid}}{\sim} \operatorname{Ga}\left(a, b\right) \end{cases},$$

where $L \in (0, \infty)$, $a \in (0, \infty)$ and $b \in (0, \infty)$ are unknown hyper-parameters.

Hint-1: The Pareto distribution is denoted Pa(L, a) and has pdf

$$f(x|L,a) = \frac{aL^a}{x^{a+1}} 1 (x \ge L).$$

Hint-2: The Gamma distribution is denoted Ga(a, b) and has pdf

$$f(x|a,b) = \frac{b^a}{\Gamma(a)} x^{a-1} \exp(-bx) \mathbb{1} (x \ge 0).$$

Hint-3: If $\psi(x) = \frac{d}{dx} \log(\Gamma(x))$, then $\psi(x+1) = \psi(x) + \frac{x}{2}$.

- (a) Derive the equations that are satisfied by the values \hat{a} and \hat{b} of a and b and which can be computed by the method ML-II. The system of these equations should contain one equation that can be solved analytically and one which cannot.
- (b) Assume that the values \hat{a} and \hat{b} from part (a) are available. Compute the Empirical Bayes estimator $\hat{\theta}_i^{\text{EB}}$ for θ_i under the loss function

$$\ell(\delta, \theta) = \frac{\delta}{\theta} - \log\left(\frac{\delta}{\theta}\right) - 1.$$

Q7 (a) Consider the Bayesian model

$$\begin{cases} y_i | \theta & \stackrel{\text{ind}}{\sim} \operatorname{Exp}\left(\frac{1}{\theta}\right), & i = 1, ..., n \\ \theta & \sim \operatorname{d}\Pi\left(\theta\right) \propto \frac{1}{\theta} \operatorname{d}\theta \end{cases}$$

Compute the Laplace approximation to the posterior expectation $E(\theta|y)$, where $y = (y_1, ..., y_n)$.

Hint: The Exponential distribution is denoted $\text{Exp}(\lambda)$ and has pdf

$$f(x|\lambda) = \lambda \exp(-\lambda x) \, \mathbb{1} \, (x \ge 0)$$

(b) Assume that the only available random number generator is that for simulating a uniform distribution in the interval [0, 1]. Design a random number generator that simulates from a continuous probability distribution with density function

$$f\left(x|\mu,b\right) = \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right) \mathbf{1}(x \in \mathbb{R}),$$

where b > 0 and $\mu \in \mathbb{R}$ are known constants. This random number generator should require the generation of no more than two uniform random variates per call. Write down the pseudo-algorithm of your random number generator. Explain your working and include your calculations in the solutions.

1, 2, ..., k

(a) Consider the following Bayesian model $\mathbf{O8}$

$$\begin{cases} y_i | \gamma, k \stackrel{\text{ind}}{\sim} \operatorname{Poi}(\gamma) & \text{for } i = 1, 2, ..., k \\ y_i | p, k \stackrel{\text{ind}}{\sim} \operatorname{Geo}(p) & \text{for } i = k + 1, k + 2, ..., n \\ \gamma \sim \operatorname{Ga}(a, b) & \text{for } i = k + 1, k + 2, ..., n \\ p \sim \operatorname{Be}(c, d) & \\ k \sim \pi(k) \propto 1(k \in \{1, 2, 3, ..., n - 1\}) \end{cases}$$

Let $y = (y_1, ..., y_n)$ be a vector of observables. Assume that $a \in (0, \infty), b \in$ $(0,\infty), c \in (0,\infty), d \in (0,\infty)$ and $n \in \mathbb{N} - \{0\}$ are fixed constants. Design a Gibbs sampler that targets the posterior distribution as stationary distribution.

Hint-1 Poi (λ) has mass function $f(x|\lambda) = \frac{\lambda^x \exp(-\lambda)}{x!} 1(x \in \{0, 1, 2, ...\}).$ **Hint-2** Geo (p) has mass function $f(x|p) = p(1-p)^x \ 1(x \in \{0, 1, 2, ...\}).$ **Hint-3** Ga (a, b) has density function $f(x|a, b) = \frac{b^a}{\Gamma(a)} x^{a-1} \exp(-bx) 1(x > 0).$ **Hint-4** Be (a, b) has density function $f(x|a, b) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} 1(x \in [0,1]).$

(b) Let $\pi(\cdot)$ and $q(\cdot|\cdot)$ be density functions. Assume s(x,y) is any symmetric positive function satisfying $s(x, y) \leq 1 + \frac{\pi(x)q(y|x)}{\pi(y)q(x|y)}$. Prove that the following recursive algorithm simulates a reversible Markov chain whose stationary distribution admits density $\pi(\cdot)$.

Algorithm: At state $x^{(t-1)}$.

step 1 Draw $y \sim q(y|x^{(t-1)})$

step 2 Draw $u \sim U(0,1)$; that is the Uniform distribution step 3 Set:

$$x^{(t)} = \begin{cases} y & a^{\mathrm{B}}\left(y|x^{(t-1)}\right) \ge u\\ x^{(t-1)} & \text{otherwise} \end{cases},$$

where

$$a^{\mathrm{B}}(y|x) = \frac{s(x,y)}{1 + \frac{\pi(x)q(y|x)}{\pi(y)q(x|y)}}.$$

(c) Show that the acceptance probability $a^{B}(y|x)$ of the Algorithm in part (b) with $s(\cdot, \cdot) = 1$ is less than or equal to the acceptance probability $a^{\text{MH}}(y|x)$ of the Metropolis-Hastings algorithm targeting distribution $\pi(\cdot)$ with proposal distribution $q(\cdot|\cdot)$, for any x, y.