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SECTION A

Q1 The Toffoli gate, T̂ , is a 3-qubit gate that acts as a Controlled-Controlled-NOT
gate (CCNOT). If the control qubit |a〉, with a ∈ {0, 1}, and the control qubit
|b〉,with b ∈ {0, 1}, are both 1 then the third qubit |c〉 is negated, |c̄〉 = |1− c〉, with
c ∈ {0, 1}, otherwise the third qubit is left untouched, i.e.

T̂ |a, b, c〉 =

{
|a, b, 1− c〉 , if a = b = 1 ,
|a, b, c〉 , otherwise.

Write down the 23 × 23 matrix representing the Toffoli gate T̂ using the standard
basis and show that this operator is unitary.

Q2 Given the matrix

ρ =

(
1
2

1
4
− i

4
1
4

+ i
4

1
2

)
,

explain why ρ can describe the state of a qubit and deduce whether such state is
pure or mixed. Finally compute the von Neumann entropy S(ρ) for this state.

Q3 3.1 In classical computation we consider functions with n-bit inputs and m-bit
outputs. In quantum computing we consider unitary transformations acting
on an n-qubit Hilbert space. In this context, what is meant by a universal gate
set in each case?

3.2 In classical computing {AND, OR, NOT, CNOT} is one example of a universal
gate set. Show that {NAND, CNOT} is also a universal gate set.

Q4 4.1 Calculate the action of the following quantum circuit on computational basis
states.

|q1〉 H •

|q0〉 X • H

4.2 Use your results from the previous part to give the action of the following
quantum circuit on computational basis states.

|q1〉 H • H •

|q0〉 X • H X • H

and draw a simpler circuit with the same action. Your circuit must use only gates
from the gate set {H, X, Y, Z, CNOT}.
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SECTION B

Q5 Alice and Bob share the two-qubit state

|Ψ〉 =
1√
2

(
|+〉 ⊗ |−〉+ |−〉 ⊗ |+〉

)
.

5.1 Is the state |Ψ〉 separable or entangled? Justify your answer.

5.2 What are the possible outcomes, their corresponding probabilities and the final
states if Alice measures the observable σ3 on the first qubit?

5.3 Compute the Schmidt number for the state |Ψ〉 and the entanglement entropy
S(A). How are these two results related to each others? [Hint: Remember that
the entanglement entropy is the von Neumann entropy of the reduced density
matrix]

Q6 Consider a bipartite system where Alice has two qubits which we will label as system
AB, and Charlie has one qubit which we label as system C.

6.1 If the system is in a separable pure state, write an expression for the state
and hence give an expression for the density operator ρ̂. Calculate the re-
duced density operator of system AB, ρ̂AB ≡ TrC(ρ̂) and evaluate Tr(ρ̂AB) and
Tr(ρ̂2

AB).

6.2 For each of the following states

|Ψ〉 =
1√
3

(|100〉+ |010〉+ |001〉)

|Φ〉 =
1√
2

(|000〉+ |111〉)

calculate the reduced density operator in system AB, and give an interpretation
as an ensemble of orthonormal pure states.

Give an example of an observable M̂ Charlie could measure which would result
in these states in system AB with the same probabilities as in the ensembles
you found.

6.3 Suppose Charlie measures the observable N̂ = |0〉 〈1|+ |1〉 〈0|. For each of the
initial states |Ψ〉 and |Φ〉, what are the possible final states in system AB, and
the probabilities for each outcome?

6.4 If Alice sends her second qubit to Bob, we can consider the system AB as a
bipartite system where Alice has one qubit and Bob the other.

For each of the states |Ψ〉 and |Φ〉, explain whether or not it is possible for
Charlie to make a local measurement so that with probability 1 the resulting
state in system AB:

• is entangled.

• is separable.
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Q7 The Quantum Fourier Transform is defined as the unitary operator UFT whose
action on the computational basis states of an n-qubit Hilbert space is

UFT |x〉 =
1

2n/2

2n−1∑
y=0

e2πixy/2
n |y〉 .

7.1 Evaluate the action of UFT on the computational basis states for the case n = 2.

7.2 Suppose we have a quantum circuit

|q1〉 = |0〉 H •
U†
FT

|q0〉 = |0〉 H •

|0〉 U U2

for some unitary U = V N for some integer N where V =

(
i 0
0 1

)
. What can

we learn about U by measuring the output values of q1, q0 in the computational
basis?

7.3 Suppose instead we have the circuit

|q1〉 = |0〉 H •
U†
FT

|q0〉 = |0〉 H •

|0〉 X S S2

where S =

(
1 0
0 i

)
. What probabilities would we have for the measured

output values (q1, q0)?
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Q8 8.1 Consider the operators in a 5 qubit Hilbert space

M0 = X4Z3Z2X1, M1 = Z4Z3X2X0, M2 = Z4X3X1Z0,

M3 = X4X2Z1Z0, M4 = X3Z2Z1X0.

Explain why any simultaneous eigenstate of M0,M1,M2,M3 is also an eigen-
state of M4 and show that

|0̄〉 =
1

4
(I +M0)(I −M1)(I +M2)(I −M3)|00000〉,

|1̄〉 =
1

4
(I +M0)(I −M1)(I +M2)(I −M3)|11111〉

are both eigenstates of all the Mi with the same eigenvalues.

8.2 Using |0̄〉 and |1̄〉 as logical qubit basis states for the code subspace, show that
the error subspaces obtained after the single-qubit errors X2, Y2 or Z2 are also
eigenspaces of all Mi, and that the code subspace and all three error subspaces
are mutually orthogonal.

8.3 Noting that {I,X, Y, Z} is a basis for 2 × 2 matrices, explain how to recover
from arbitrary single-qubit errors on qubit 2.

8.4 By symmetry it can be shown (You do not have to show this.) that it is
possible to recovery from an arbitrary single-qubit error on any qubit. Is Z̄ =
Z4Z3Z2Z1Z0 a fault tolerant gate implementing the Pauli Z operator on the
logical qubit? Justify your answer.
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