

EXAMINATION PAPER

Examination Session: May/June Year:

2022

Exam Code:

MATH3471-WE01

Title:

Geometry of Mathematical Physics III

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.
	Students must use the mathematics specific answer book.

Revision:

SECTION A

- Q1 1.1 State the definition of the group SU(2).
 - 1.2 Check that

$$g(t) := \exp\left(it \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}\right)$$

is an element of SU(2) for all $t \in \mathbb{R}$. Determine for which values of t the group element g(t) is equal to the identity by expanding the exponential.

- **1.3** Letting $t \in (-1,1)$, g(t) defines a path in SU(2). Find the associated Lie algebra element γ_1 by computing the tangent vector at g(0). Which Lie algebra element is associated to the path g(2t)?
- **1.4** Find a basis of the Lie algebra of SU(2) and explain your reasoning.
- **Q2** Let q be a vector which transforms in the fundamental representation of SU(3), and M a matrix which transforms in the adjoint representation of SU(3).
 - **2.1** Give the transformation behaviour of q and M under a group element $g \in SU(3)$.
 - **2.2** For a mechanical system with finitely many degrees of freedom q, show that the action

$$S = \int dt \; \dot{\boldsymbol{q}}^{\dagger} \dot{\boldsymbol{q}} - V(\boldsymbol{q}^{\dagger} \boldsymbol{q})$$

is invariant and find the conserved quantities.

- **2.3** Denoting the components of q by q_i and the components of M by M_{ij} , find the action of SU(3) on
 - i) A vector \boldsymbol{v} with components $v_i = \sum_j M_{ij} q_j$
 - ii) A matrix Q with components $Q_{ij} = q_i q_j$
 - iii) A matrix $E = \exp(tM)$ for $t \in \mathbb{R}$

Show that this defines a representation of SU(3) in each of the cases. (You do not need to prove that the action is on a vector space.)

Q3 Let A_{μ} be a U(1) gauge field, ϕ a scalar field of charge 1, and χ a scalar field of charge -2, with gauge transformations

$$(A_{\mu}, \phi, \chi) \mapsto (A_{\mu} + \partial_{\mu} \alpha, \exp[i\alpha]\phi, \exp[-2i\alpha]\chi).$$

Exam code

MATH3471-WE01

Show that

$$\chi(z) \exp\left[iq \int_{y,C}^{z} A_{\mu}(x) dx^{\mu}\right] \phi(y)^{2}$$

is gauge invariant for an appropriate value of the integer q that you should find. (The line integral in the exponent is over a curve C from point y to point z.)

Q4 It is given that, in a gauge where $A_0 = 0$, the energy of static field configurations of a gauge field A_{μ} and a scalar ϕ transforming in the adjoint representation of the gauge group is

$$E = \int d^3x \, \mathrm{tr} \left(\frac{1}{g_{YM}^2} B_i B_i + (D_i \phi) (D_i \phi) \right) \, ,$$

where the spatial indices i = 1, 2, 3 are summed over, D_i are covariant derivatives, $B_i = -\frac{1}{2} \epsilon_{ijk} F_{jk}$, and the integral is over space \mathbb{R}^3 . Find a lower bound for the energy E in terms of an integral over the 2-sphere at spatial infinity. You may use without proof the Bianchi identity $\epsilon_{ijk} D_i F_{jk} = 0$.

Exam code
MATH3471-WE01
I I
1

SECTION B

Q5 The Lie group $SL(2,\mathbb{C})$ is the group of complex 2×2 matrices

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

such that $\det g = 1$.

5.1 For $g \in SL(2,\mathbb{C})$, show that the action on \mathbb{R}^4 with coordinates x_i given by

$$F(g): \begin{pmatrix} x_0 + x_3 & x_1 - ix_2 \\ x_1 + ix_2 & x_0 - x_3 \end{pmatrix} \mapsto g \begin{pmatrix} x_0 + x_3 & x_1 - ix_2 \\ x_1 + ix_2 & x_0 - x_3 \end{pmatrix} g^{\dagger}$$

defines a group homomorphism from $SL(2, \mathbb{C})$ to the Lorentz group. Identify which of the disjoint components of the Lorentz group this homomorphism maps to and explain your reasoning.

5.2 Show that

$$\exp\left(\sum_{i=1}^{3}\alpha_{i}\sigma_{i}\right)\in SL(2,\mathbb{C})$$

where $\alpha_i \in \mathbb{C}$ and

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} , \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

5.3 The homomorphism between $SL(2, \mathbb{C})$ and the Lorentz group defines a representation of $SL(2, \mathbb{C})$ on \mathbb{R}^4 . Find the associated Lie algebra representation and describe its action on \boldsymbol{x} (written as a column vector) in terms of the α_i . Verify that this maps the Lie algebra of $SL(2, \mathbb{C})$ to the Lie algebra of the Lorentz group.

Exam code MATH3471-WE01

Q6 The components of the Faraday tensor in terms of electric and magnetic fields are

$$F_{\mu\nu} = \begin{pmatrix} 0 & E_1 & E_2 & E_3 \\ -E_1 & 0 & -B_3 & B_2 \\ -E_2 & B_3 & 0 & -B_1 \\ -E_3 & -B_2 & B_1 & 0 \end{pmatrix}$$

- **6.1** Setting $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$, show that $\partial_{\mu}F_{\rho\sigma}\epsilon^{\mu\nu\rho\sigma} = 0$. Here $\epsilon^{\mu\nu\rho\sigma}$ is the completely antisymmetric tensor with $\epsilon^{0123} = 1$.
- **6.2** Write

$$F_{\mu\nu}F_{\rho\sigma}\epsilon^{\mu\nu\rho\sigma}$$

in terms of electric and magnetic fields.

6.3 A relativistic point particle is described by its world-line C in space-time with coordinates $\boldsymbol{x} = (x^0, x^1, x^2, x^3)$. Parametrizing C by functions $x^{\mu}(s)$, the action of a charged particle in the presence of electromagnetic fields is

$$S = \int_C ds \left(\sqrt{-\dot{x}^{\mu} \dot{x}_{\mu}} + q \, \dot{x}^{\mu} A_{\mu}(\boldsymbol{x}) \right) \tag{1}$$

where $\dot{x}^{\mu} = \frac{d}{ds} x^{\mu}$. Show that gauge transformations acting on A_{μ} are symmetries of this action.

6.4 Find the equations of motion for $x^{\mu}(s)$ which follow from the action (1) and verify that they are gauge invariant by writing them in terms of electric and magnetic fields.

Q7 The infinitesimal gauge variations of a non-abelian gauge field $A_{\mu} = A_{\mu}^{\dagger}$ and a charged field ϕ are given by

$$\delta_{\alpha}A_{\mu} = i[\alpha, A_{\mu}] + \partial_{\mu}\alpha , \qquad \delta_{\alpha}\phi = i\alpha\phi ,$$

Exam code

MATH3471-WE01

where $\alpha = \alpha^{\dagger}$ is an infinitesimal element of the Lie algebra of the gauge group, and the gauge transformation with parameter α of any field X is given by

$$X \mapsto X' = X + \delta_{\alpha} X + O(\alpha^2)$$
.

- **7.1** Show that, for any two fields f and g, the infinitesimal gauge variation of their product fg is $\delta_{\alpha}(fg) = (\delta_{\alpha}f)g + f(\delta_{\alpha}g)$.
- **7.2** Find the infinitesimal gauge variation $\delta_{\alpha}F_{\mu\nu}$ of the field strength

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - i[A_{\mu}, A_{\nu}]$$

and show that

$$\mathcal{L}_{YM} = -\frac{1}{2g_{YM}^2} \operatorname{tr}(F_{\mu\nu}F^{\mu\nu})$$

is invariant under infinitesimal gauge transformations, that is $\delta_{\alpha} \mathcal{L}_{YM} = 0$.

7.3 Find the infinitesimal gauge variation $\delta_{\alpha}(D_{\mu}\phi)$ of the covariant derivative $D_{\mu}\phi = \partial_{\mu}\phi - iA_{\mu}\phi$ of the charged field ϕ . Show that

$$\mathcal{L}_{\text{matter}} = -(D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) - m^{2}\phi^{\dagger}\phi$$

is invariant under infinitesimal gauge transformations, that is $\delta_{\alpha} \mathcal{L}_{\text{matter}} = 0$.

Q8 'Static' (or time-independent) configurations of a charged scalar field ϕ and a gauge field A_j in $n \ge 1$ space dimensions have total energy

$$E[\phi, A] = E_1[\phi, A] + E_2[\phi] + E_3[A] ,$$

Exam code

MATH3471-WE01

with

$$E_1[\phi, A] = \int d^n x \ ((\partial_j - iA_j)\phi)^{\dagger}((\partial_j - iA_j)\phi)$$
$$E_2[\phi] = \int d^n x \ V(\phi)$$
$$E_3[A] = \int d^n x \ \frac{1}{2g^2} \operatorname{tr} \left(F_{jk}F_{jk}\right) \ .$$

Here j, k = 1, ..., n are spatial indices, Einstein's summation convention is used, $F_{jk} = \partial_j A_k - \partial_k A_j - i[A_j, A_k]$, and $V(\phi) \ge 0$, with $V(\phi) = 0$ at its minima. We are working in a gauge where $A_0 = 0$.

8.1 Consider a scale transformation

$$\phi(x) \mapsto \phi^{\lambda}(x) := \phi(\lambda x)$$
$$A_j(x) \mapsto A_j^{\lambda}(x) := \lambda^{\beta} A_j(\lambda x) ,$$

for any $\lambda > 0$. Show that for a suitable choice of the constant β , that you should find, the three contributions to the energy satisfy

$$E_1[\phi^{\lambda}, A^{\lambda}] = \lambda^{a_1} E_1[\phi, A] , \quad E_2[\phi^{\lambda}] = \lambda^{a_2} E_2[\phi] , \quad E_3[A^{\lambda}] = \lambda^{a_3} E_3[A]$$

for some constants a_1 , a_2 and a_3 that you should also find.

8.2 Using that static solutions of the equations of motion leave the total energy $E[\phi, A]$ stationary under infinitesimal variations of the fields, show that for all static solutions of the equations of motion

$$c_1 E_1[\phi, A] + c_2 E_2[\phi] + c_3 E_3[A] = 0$$
,

for some constants c_1 , c_2 and c_3 that you should find.

8.3 Show that if n = 1, static solutions of the equations of motion can only exist if the gauge field vanishes, that is $A_j = 0$.