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SECTION A

Q1 Consider the following Cauchy problem for u : R2 → R{
∂xu(x, y) + ∂yu(x, y) = 0, (x, y) ∈ R2,
u(x,−x) = x2, x ∈ R. (1)

(a) Show that the Cauchy curve satisfies the non-characteristic condition.

(b) By differentiating the condition u(x,−x) = x2 with respect to the x-variable,
determine ∂xu(x,−x) and ∂yu(x,−x).

(c) Solve (1) using the method of characteristics. By direct computation, check
that the obtained function satisfies both the PDE and the Cauchy condition.

Q2 Let v : Rn → R be given. Consider the following Cauchy problem associated to the
heat equation {

∂tu(x, t)−∆u(x, t) = 0, (x, t) ∈ Rn × (0,+∞),
u(x, 0) = v(x), x ∈ Rn.

(2)

(a) Let λ ∈ R, λ 6= 0. Show that if u is a solution to (2) with initial datum v,
then uλ(x, t) := u(λx, λ2t) is a solution to the same PDE, with initial datum
vλ(x) = v(λx).

(b) Suppose that v is integrable, bounded, continuous and nonnegative. Show that
limλ→+∞ uλ(x, t) = 0 for all (x, t) ∈ Rn × (0,+∞). [Hint: use the representa-
tion formula via the fundamental solution].

(c) Let v be twice continuously differentiable with compact support. Show that
the solution u to (2) is stationary (i.e. u(x, t1) = u(x, t2) for any t1, t2 > 0 and
x ∈ Rn) if and only if v is harmonic.

(d) Show that the situation in (c) can take place only if v and u are constant zero
functions.
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SECTION B

Q3 We are aiming to construct weak entropy solutions to the following conservation
law. {

∂tu+ ∂x
(

1
4
u4 + 1

2
u2
)

= 0, (x, t) ∈ R× (0,+∞),
u(x, 0) = u0(x), x ∈ R,

where u0 : R→ R is given by

u0(x) =

{
1, x ∈ (0, 1),
0, otherwise.

(a) Sketch the characteristics associated to this problem. Discuss the need of
rarefaction waves and/or shock curves in order to construct an entropy solution.

(b) Using the Rankine-Hugoniot condition, introduce a shock curve that emerges
from (x, t) = (1, 0). Show that this curve satisfies Lax’s entropy condition.

(c) Write down the conditions satisfied by rarefaction waves emerging from the
origin. Show the existence of such waves (it is not required to find these waves
explicitly).

(d) In order to find a globally defined entropy solutions, notice that a new shock
curve needs to be introduced. Determine the ODE and initial condition that
must be satisfied by this shock (this might depend on the rarefaction waves;
it is not required to find this shock explicitly) [Hint: think about the inverse
function theorem].

(e) Find a candidate for the entropy solution to this problem (we allow it to be un-
bounded) that depends on the rarefaction waves and shocks (it is not required
to verify the jump conditions).

Q4 We aim to solve a system of first order PDEs using the method of characteristics.
Consider the following Cauchy problem

∂xu1(x, y)− ∂yu1(x, y) = u2(x, y), (x, y) ∈ R2,
∂xu2(x, y)− ∂yu2(x, y) = u1(x, y), (x, y) ∈ R2,
u1(x, 0) = x2, u2(x, 0) = −x2, x ∈ R,

(3)

where u1, u2 : R2 → R are the unknown functions. We remark that since the driving
vector field is the same in both equations of (3), both equations are governed by
the same characteristics.

(a) Determine the Cauchy curve and the Cauchy data associated to this problem.

(b) Write down the ODE system for these characteristics (denoted by (x(τ, s), y(τ, s)))
together with the initial conditions, then solve this system.

(c) Write down the ODE system for the solutions along the flow (denoted by
zi(τ, s) := ui((x(τ, s), y(τ, s)), i = 1, 2), then solve this system.

(d) By inverting the flow, find the solutions (u1(x, y), u2(x, y)) to (3). By direct
computation verify that the functions are indeed solutions.
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Q5 Consider the problem
∂tu(x, t) + ∂2

xxu(x, t) = 0, (x, t) ∈ (0, 2π)× (0,+∞),
u(0, t) = u(2π, t), t ≥ 0,
u(x, 0) = u0(x), x ∈ (0, 2π),

(4)

where u0 : [0, 2π]→ C is a given smooth function.

(a) Using Fourier series find a candidate for the solution u to (4) in terms of the
Fourier coefficients of u0.

(b) Let u0(x) := ũ0(x) + 1
n

exp (inx) for n ∈ N and ũ0 : [0, 2π] → C is another
given smooth function. Find the candidate for the solution to (4) for this initial
datum in terms of Fourier coefficients of ũ0.

(c) Conclude that the problem (4) is ill-posed. [Hint: think about the stability,
i.e. continuous dependence of the solution on the data. Use the uniform
convergence.]

Q6 We consider the following minimisation problem

min

{∫ 1

0

et[u′(t)2 + 2u(t)2 + 4u(t)]dt : u ∈ C1([0, 1]), u(0) = 0

}
.

We assume that this problem has a minimiser.

(a) Explain why can we find this minimiser by taking the first variation of the
functional?

(b) Take an admissible class of perturbations and derive the ODE and the bound-
ary conditions satisfied by the minimiser.

(c) Solve the problem obtained in (b). Check whether this indeed satisfies the
boundary condition.

(d) Compute the minimal value of the original minimisation problem (it can be
left in an implicit form as an integral).

SECTION C

Q7 For n ∈ N, consider un : R → (−π/2, π/2), defined as un(x) = arctan(nx). Here
arctan denotes for the inverse function of the tan function, i.e. tan(arctan(x)) = x
for any x ∈ R and arctan(tan(θ)) = θ for any θ ∈ (−π/2, π/2).

(a) Compute the pointwise limit of un, as n→ +∞.

(b) Show that un converges to its pointwise limit in the sense of distributions, as
n→ +∞.

(c) Show that u′n (the distributional derivative of un) converges to πδ0 in the
sense of distributions, as n → +∞. Here δ0 stands for the Dirac delta mass
concentrated at the origin [Hint: arctan′(x) = (1 + x2)−1].

(d) Let vn(x) := un(x2). Compute the distributional limits of vn and v′n (the
distributional derivative of vn), as n→ +∞.
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