

EXAMINATION PAPER

Examination Session: May/June

2022

Year:

Exam Code:

MATH4091-WE01

Title:

Stochastic Processes IV

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 20%, Section B is worth 60%, and Section C is worth 20%. Within Sections A and B, all questions carry equal marks.
	Students must use the mathematics specific answer book.

Revision:

SECTION A

Q1 Suppose that $(Y_i)_{i \in \mathbb{N}}$ is a sequence of independent and identically distributed nonnegative integer valued random variables and N is a non-negative integer valued random variable that is independent of $(Y_i)_{i \in \mathbb{N}}$. Define

$$S_N := \sum_{i=1}^N Y_i$$

and let G_N, G_{Y_1}, G_{S_N} be the generating functions of N, Y_1, S_N respectively; that is:

$$G_N(s) = \mathsf{E}(s^N)$$
; $G_{Y_1}(s) = \mathsf{E}(s^{Y_1})$; $G_{S_N}(s) = \mathsf{E}(s^{S_N})$

for all $s \in (0, 1)$.

- (a) Prove that $G_{S_N}(s) = G_N(G_{Y_1}(s))$ for all $s \in (0, 1)$.
- (b) Suppose that a fair coin (equally likely to land H or T) is tossed infinitely many times, and assume that the results of distinct tosses are independent. Let $(Y_i)_{i\in\mathbb{N}}$ be defined by setting $Y_i = 1$ if the *i*th toss is a T and 0 otherwise. Let $N := \min\{i \ge 1 : Y_i = 1\}$ be the first toss landing T and $S_N := \sum_{i=1}^N Y_i$. Calculate

$$G_{S_N}(s) = \mathsf{E}(s^{S_N})$$

for $s \in (0, 1)$.

- (c) Calculate $G_N(G_{Y_1}(s))$ for $s \in (0, 1)$, where N, Y_1 are distributed as in part (b). Do your answers for (b) and (c) contradict part (a)?
- **Q2** Let X_t be a continuous time Markov process on the state space $\mathcal{I} = \{1, 2, 3\}$ with Q-matrix

$$Q = \begin{pmatrix} -8 & 4 & 4\\ 2 & -6 & 4\\ 2 & 0 & -2 \end{pmatrix}$$

- (a) Find the characteristic polynomial of Q and identify the eigenvalues.
- (b) Compute $p_{2,3}(t)$ and evaluate $\lim_{t\to\infty} p_{2,3}(t)$.
- (c) Find the invariant distribution π of the process.

SECTION B

Q3 A standard fair die is tossed repeatedly. Let T be the number of tosses until the sequence 3 - 2 - 1 - 3 is observed for the first time. Use the appropriate optional stopping theorem to find the expectation $\mathsf{E}(T)$. In your answer you should clearly state and carefully apply any result you use.

Q4 Let $(X_n)_{n\geq 0}$ and $(Y_n)_{n\geq 0}$ be independent simple symmetric random walks starting from $X_0 \equiv 1$ and $Y_0 \equiv -1$ respectively. That is,

$$X_n := 1 + \sum_{i=1}^n Z_i$$
; $Y_n := -1 + \sum_{i=1}^n W_i$

Exam code

MATH4091-WE01

where $Z_1, W_1, Z_2, W_2...$ are all independent, each taking values +1 with probability $\frac{1}{2}$ and -1 with probability $\frac{1}{2}$.

- **4.1** Let $T_0 := \min\{n \ge 0 : X_n = 0\}$ be the hitting time of 0 by $(X_n)_{n\ge 0}$. Using generating functions or otherwise, show that $\mathsf{P}(T_0 < \infty) = 1$.
- **4.2** Using coupling or otherwise, show that Y_n is stochastically dominated by X_n for all $n \ge 0$.
- **4.3** Define $(\tilde{X}_n, \tilde{Y}_n)_{n\geq 0}$ by letting $(\tilde{X}_n)_{n\geq 0}$ have the same distribution as $(X_n)_{n\geq 0}$ and given $(\tilde{X}_n)_{n\geq 0}$ and $\tilde{T}_0 = \min\{n\geq 0: \tilde{X}_n = 0\}$, setting

$$\tilde{Y}_n = \begin{cases} -\tilde{X}_n & \text{ for } n \leq \tilde{T}_0 \\ \tilde{X}_n & \text{ for } n > \tilde{T}_0 \end{cases}$$

Show that this provides a coupling of (X_n, Y_n) for each n. Hence or otherwise show that the total variation distance $d_{TV}(X_n, Y_n)$ converges to 0 as $n \to \infty$.

In your answers you should clearly state and carefully apply any result(s) that you use.

Q5 Let X_t be a continuous time Markov process on a finite state space \mathcal{I} . Let Q be its Q-matrix and P_t be its transition matrices. Suppose $f : \mathcal{I} \to \mathbb{R}$ is a function. The matrices Q and P_t act on f as a column vector, namely the functions Qf and P_tf are defined by

$$Qf(x) = \sum_{y \in \mathcal{I}} Q_{x,y} f(y), \quad P_t f(x) = \sum_{y \in \mathcal{I}} p_{x,y}(t) f(y) \quad \text{for } x \in \mathcal{I}.$$

5.1 For t > 0 and $x \in \mathcal{I}$, define $u_t(x) = \mathsf{E}[f(X_t) \mid X_0 = x]$. Show that

$$\frac{d}{dt}u_t(x) = Qu_t(x) = \sum_{y \in \mathcal{I}} Q_{x,y}u_t(y).$$

- **5.2** The function f as above is called harmonic if $P_t f = f$ for every $t \ge 0$. Show that f is harmonic if and only if Qf = 0.
- **5.3** Suppose f is a harmonic function and define $M_t = f(X_t)$. Let $\mathcal{F}_t = \sigma(X_s; s \leq t)$ be the sigma-algebra generated by the process up to time t. Show that M_t is a martingale with respect to filtration \mathcal{F}_t , that is,

$$\mathsf{E}[M_t \mid \mathcal{F}_s] = M_s \quad \text{for } s < t.$$

- **Q6** Let B_t be standard Brownian motion.
 - **6.1** Let $m_t = \min\{B_s; s \le t\}$ be the minimum of Brownian motion from time 0 to time t. Find a simple expression for

$$\mathsf{P}(m_t \le a)$$

that only involves the distribution of B_t at time t.

6.2 The zero set of Brownian motion is the set $Z = \{t \ge 0 : B_t = 0\}$. The measure of the zero set is

$$|Z| = \int_0^\infty \mathbf{1}_{\{B_t=0\}} \, dt.$$

Prove that |Z| = 0 almost surely.

6.3 A local maximum of Brownian motion is a time t such that for some $\delta > 0$, $B_s \leq B_t$ for every $s \in (t-\delta, t+\delta)$. Prove that, almost surely, Brownian motion has a local maximum in every interval [a, b] of positive length.

Hint: Recall that almost surely, Brownian motion is not monotone on any interval.

SECTION C

- **Q7** 7.1 Suppose that $(Z_n)_{n\geq 0}$ is a single-type time-homogeneous branching process with $Z_0 \equiv 1$ and offspring distribution with generating function $\varphi(s) := \mathsf{E}(s^{Z_1})$ (defined for all s such that s^{Z_1} is integrable).
 - (i) If $\varphi_n(s) := \mathsf{E}(s^{\mathbb{Z}_n})$ is the generating function of \mathbb{Z}_n , prove the identity

$$\varphi_{n+1}(s) = \varphi(\varphi_n(s)) = \varphi_n(\varphi(s)) \quad \forall s \in (0,1) , \ \forall n \ge 1.$$

- (ii) Suppose that Z_1 is integrable and $\mathsf{E}(Z_1) = m$. Give, with proof, an expression for $\mathsf{E}(Z_n)$ for $n \ge 1$ in terms of m and n.
- (iii) Suppose that the offspring distribution is Poisson with parameter $\lambda > 0$, that is, $\mathsf{P}(Z_1 = k) = \exp(-\lambda)\frac{\lambda^k}{k!}$ for $k \ge 0$. For which values of λ is the survival probability $\mathsf{P}(\bigcap_{n\ge 0} \{Z_n > 0\})$ strictly positive? In your answer you should clearly state and apply any result that you use.
- **7.2** Suppose that $(Z_n^1, Z_n^2)_{n\geq 0}$ is a two-type time-homogeneous branching process whose offspring distribution has generating function

$$f^{1}(s_{1}, s_{2}) = \mathsf{E}\left(s_{1}^{Z_{1}^{1}} s_{2}^{Z_{1}^{2}} | (Z_{0}^{1}, Z_{0}^{2}) = (1, 0)\right) = \frac{1}{4}s_{1}^{2}s_{2}^{2} + \frac{1}{2}s_{1}^{2} + \frac{1}{4};$$

$$f^{2}(s_{1}, s_{2}) = \mathsf{E}\left(s_{1}^{Z_{1}^{1}} s_{2}^{Z_{1}^{2}} | (Z_{0}^{1}, Z_{0}^{2}) = (0, 1)\right) = \frac{1}{2}s_{1}s_{2} + \frac{1}{2}s_{2}^{2}.$$

Calculate the extinction probability

$$\rho^1 = \mathsf{P}\left(\bigcup_n \{(Z_n^1, Z_n^2) = (0, 0)\} \,|\, (Z_0^1, Z_0^2) = (1, 0)\right),$$

clearly stating and applying any results that you use. Hint: it may help to first determine $\mathsf{P}(\bigcup_n \{(Z_n^1, Z_n^2) = (0, 0)\} | (Z_0^1, Z_0^2) = (0, 1)).$