

EXAMINATION PAPER

Examination Session: May/June

Year: 2022

Exam Code:

MATH4171-WE01

Title:

Riemannian Geometry IV

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.
	Students must use the mathematics specific answer book.

Revision:

SECTION A

- **Q1** Let $M = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 y^2 2z^2 = 1\}$ be a hyperboloid.
 - **1.1** Show that M is a 2-dimensional smooth manifold.
 - **1.2** Find two curves $\gamma_i: [0,1] \to M$, i = 1,2, such that $\gamma_1(0) = \gamma_2(0) = (1,0,0)$ and $\{\gamma'_1(0), \gamma'_2(0)\}$ is a basis for $T_{(1,0,0)}M$.
- **Q2** Let X, Y be two differentiable vector fields on \mathbb{R}^3 defined by

$$\begin{split} X(x,y,z) &= 2y\frac{\partial}{\partial x} + (z-2x)\frac{\partial}{\partial y} - y\frac{\partial}{\partial z},\\ Y(x,y,z) &= -z\frac{\partial}{\partial x} + x\frac{\partial}{\partial z}. \end{split}$$

- **2.1** Compute the Lie bracket [X, Y].
- **2.2** Let r > 0 and $S^2(r) = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = r^2\}$ be the 2-dimensional sphere of radius r. Show that the restriction of [X, Y] to $S^2(r)$ is a vector field on $S^2(r)$.
- Q3 3.1 Define the Levi–Civita connection on a Riemannian manifold.
 - **3.2** Let (M, g) be a Riemannian manifold and let R be its curvature tensor. Prove Bianchi's first identity

$$R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0,$$

assuming that Jacobi's identity

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$$

holds for $X, Y, Z \in \mathcal{X}(M)$. You do not need to prove Jacobi's identity.

- **Q4** 4.1 State the symmetry properties of the curvature tensor R of a Riemannian manifold (M, g).
 - **4.2** Prove or disprove the following statement: The smooth manifold \mathbb{R}^n admits a complete Riemannian metric with sectional curvature $K \geq 1$.
 - **4.3** Let (M, g) be a Riemannian manifold and let $c: [a, b] \to M$ be a geodesic. Let $X \in \mathcal{X}_c(M)$ be a parallel vector field along c. Show that the function $f: [a, b] \to \mathbb{R}$ given by $t \mapsto \langle X(t), c'(t) \rangle$ is constant.

SECTION B

Q5 Let $M(n,\mathbb{R})$ denote the set of all $n \times n$ matrices with real entries, let

$$Sym(n) = \{ A \in M(n, \mathbb{R}) \mid A^T = A \}$$

be the set of $n \times n$ symmetric matrices, and let

$$J = \begin{pmatrix} \mathrm{Id}_{n-1} & 0\\ 0 & -1 \end{pmatrix},$$

ED01/2022

University of Durham Copyright

CONTINUED

where Id_k denotes the $k \times k$ identity matrix in $M(k, \mathbb{R})$. Let

$$O(n-1,1) = \{ A \in M(n,\mathbb{R}) \mid AJA^T = J \}.$$

You may assume, without proof, that $M(n, \mathbb{R})$ and Sym(n) are Lie groups (with respect to matrix multiplication).

5.1 Let $f: M(n, \mathbb{R}) \to \text{Sym}(n)$ be given by $f(A) = AJA^T$. Show that, given $A, B \in M(n, \mathbb{R})$,

$$Df_A(B) = AJB^T + BJA^T,$$

and conclude that, for $A \in O(n-1, 1)$ and $C \in Sym(n)$,

$$Df_A(\frac{1}{2}CJA) = C$$

You may assume, without proof, that every matrix in O(n-1,1) is invertible and that O(n-1,1) is a group under matrix multiplication.

- **5.2** Show that $J \in \text{Sym}(n)$ is a regular value of f.
- **5.3** Show that O(n-1, 1) is a differentiable manifold and determine its dimension.
- **Q6** Let M and N be smooth manifolds. A map $f: M \to N$ is a local diffeomorphism if every point $p \in M$ has a neighborhood U such that f(U) is open in N and $f|_U: U \to f(U)$ is a diffeomorphism.
 - **6.1** Show that the differential Df_p of a local diffeomorphism $f: M \to N$ is a linear isomorphism of vector spaces for any $p \in M$.
 - 6.2 State the definition of an oriented manifold.
 - **6.3** Suppose now that the manifolds M and N are connected and oriented. Assume, without proof, that the given orientations induce orientations on each tangent space of M and N via the coordinate tangent vectors. A local diffeomorphism $f: M \to N$ is orientation-preserving if, for each $p \in M$, the isomorphism $Df_p: T_pM \to T_{f(p)}N$ preserves orientation, and orientation-reversing if $Df_p: T_pM \to T_{f(p)}N$ reverses orientation. Show that the composition of two orientation-preserving local diffeomorphisms is orientation-preserving.
- **Q7** Let (M, g) be a Riemannian manifold with curvature tensor R.
 - 7.1 Show that

$$R(X,Y)(fZ) = fR(X,Y)Z$$

for $X, Y, Z \in \mathcal{X}(M)$ and $f \in C^{\infty}(M)$.

7.2 Suppose that there exists a constant $C \in \mathbb{R}$ such that

$$\langle R(X,Y)W,Z\rangle = C(\langle X,Z)\rangle\langle Y,W\rangle - \langle X,W\rangle\langle Y,Z\rangle). \tag{(*)}$$

Show that (M, g) is an Einstein manifold, i.e., Ric = λg for some function $\lambda \in C^{\infty}(M)$, and determine the concrete value of λ .

7.3 Let (M, g) be a Riemannian manifold satisfying equation (*) for a constant $C \leq 0$. Let $c: [a, b] \to M$ be a geodesic parametrised by arc-length and $X \in \mathcal{X}_c(M)$ be a parallel vector field along c with $\langle X(t), c'(t) \rangle = 0$ for all $t \in [a, b]$. Show that the vector field

$$J(t) = \cosh(\sqrt{-Ct})X(t)$$

is a Jacobi field along c.

- **Q8** 8.1 Let (M, g) be a Riemannian manifold and let ∇ be its Levi–Civita connection. Let X, Y be smooth vector fields on M and suppose that Y has constant length, i.e., ||Y(p)|| is constant for all $p \in M$. Show that $(\nabla_X Y)(p)$ is orthogonal to Y(p) for all $p \in M$.
 - **8.2** State the definition of a tensor field on a smooth manifold M.
 - **8.3** Let M be a smooth manifold, let ∇ be a linear connection on M, and let F be a $\binom{1}{1}$ tensor field on M. Show that the map $\nabla F \colon \mathcal{X}(M) \times \mathcal{X}(M) \to \mathcal{X}(M)$ given by

$$\nabla F(X,Y) = \nabla_X(F(Y)) - F(\nabla_X Y)$$

defines a $\binom{2}{1}$ tensor field on M.