

# **EXAMINATION PAPER**

| Examination Session:      | Year:        |                                                                                                                                                             | Exam Code:              |              |  |  |
|---------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|--|--|
| May/June                  | 2022         | MATH4181-WE01                                                                                                                                               |                         |              |  |  |
| ,                         |              |                                                                                                                                                             |                         |              |  |  |
|                           |              |                                                                                                                                                             |                         |              |  |  |
| Title                     |              |                                                                                                                                                             |                         |              |  |  |
| Mathematical Finance IV   |              |                                                                                                                                                             |                         |              |  |  |
|                           |              |                                                                                                                                                             |                         |              |  |  |
| Time:                     | 3 hours      | 3 hours                                                                                                                                                     |                         |              |  |  |
| Additional Material provi | ided:        |                                                                                                                                                             |                         |              |  |  |
|                           |              |                                                                                                                                                             |                         |              |  |  |
| Materials Permitted:      |              |                                                                                                                                                             |                         |              |  |  |
| iviateriais Permitteu.    |              |                                                                                                                                                             |                         |              |  |  |
| Calculators Permitted:    | Yes          | Models Permitted: Casio FX83 series or FX85 series.                                                                                                         |                         |              |  |  |
|                           |              |                                                                                                                                                             |                         |              |  |  |
|                           |              |                                                                                                                                                             |                         |              |  |  |
| Instructions to Candidat  | Angwar all a | uootiona Soc                                                                                                                                                | ation A is worth 200/ S | Postion P is |  |  |
| mstructions to Candidat   | worth 60%, a | Answer all questions. Section A is worth 20%, Section B is worth 60%, and Section C is worth 20%. Within Sections A and B, all questions carry equal marks. |                         |              |  |  |
|                           | Students mu  | Students must use the mathematics specific answer book.                                                                                                     |                         |              |  |  |
|                           | Otadonto ma  |                                                                                                                                                             |                         | or book.     |  |  |
|                           |              |                                                                                                                                                             |                         |              |  |  |
|                           |              |                                                                                                                                                             |                         |              |  |  |
|                           |              |                                                                                                                                                             |                         |              |  |  |
|                           |              |                                                                                                                                                             |                         |              |  |  |
|                           |              |                                                                                                                                                             |                         |              |  |  |
|                           |              |                                                                                                                                                             |                         |              |  |  |
|                           |              |                                                                                                                                                             | Revision:               |              |  |  |
|                           |              |                                                                                                                                                             |                         |              |  |  |

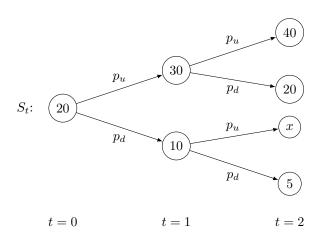
# SECTION A

- Q1 (a) State the Cox-Ross-Rubinstein formula for the price at time T-t of a European call option with strike price K and expiry date T. Explain clearly any notation you use in your formula.
  - (b) Using your formula in part (a), calculate the price at time 0 of a European call option with strike price K=40 and expiry date T=5 on an underlying risky asset with price  $S_t$  that evolves according to the 5-period binomial model with  $S_0=40, u=1.2, d=0.8, p_u=0.8, p_d=0.2$  and where the interest rate is compounded discretely at rate r=0.1 per time period.
  - (c) Explain what happens to the Cox–Ross–Rubinstein price in part (b) for values of K < 13.
- **Q2** Under the Black–Scholes model, let  $C(K, T, \sigma, S_0, r)$  be the price of a European call option with strike price K and time to expiry T where the underlying stock has volatility  $\sigma$  and current price  $S_0$ , and r is the risk-free rate.
  - (a) State the Black-Scholes formula for  $C(K, T, \sigma, S_0, r)$ .
  - (b) Find  $\frac{\partial C}{\partial \sigma}$  and show that the price of a European call option, as a function of the volatility parameter  $\sigma > 0$ , is strictly increasing.
  - (c) Does the price of a European put option increase with  $\sigma > 0$  as well?

# **SECTION B**

- Q3 (a) Define the four main types of barrier option derived from a European-style option with contract function  $\Phi$  and expiry date T. In each case provide a random variable that represents the random payoff of the barrier option. You may give your answer in terms of the price  $S_t$  of the underlying risky asset, and the contract function  $\Phi$ , but you should define any other notation you use.
  - (b) Suppose that the price  $S_t$  of a risky asset evolves according to the 3-period binomial model, with parameters  $S_0 = 216, u = 7/6, d = 5/6, p_u = 1/4, p_d = 3/4$  and that interest is compounded at rate r = 1/12 per time period. Calculate the prices at all times t = 0, 1, 2, 3 of a down-and-out barrier (European) put option with strike price K = 250, barrier 160, and expiry date T = 3.

**Q4** Consider the market  $(B_t, S_t)$  where  $B_t = (5/4)^t$  for t = 0, 1, 2, and  $S_t$  evolves randomly according to the diagram below, with  $p_u = p_d = 1/2$  at each node.



- (a) State the conditions on x that guarantee that the market is arbitrage free and calculate the risk-neutral probabilities at every node in this case.
- (b) Give the definition of an American put option with strike price K and expiry time T and describe the algorithm for pricing an American put option on this market. (You do not need to prove the correctness of the algorithm.)
- (c) Calculate the price at time 0 of an American put option with strike price K = 20 and expiry date T = 2, as a function of x.
- (d) Now suppose that the strike price of the option is K=30. Prove that it is always optimal to exercise at t=0, whatever the value of x (assuming the market is arbitrage free).

- **Q5** 5.1 Show that if  $W = (W_t, t \ge 0)$  is a Brownian motion and c > 0, then the process  $(c^{-1/2}W_{ct}, t \ge 0)$  is also a Brownian motion.
  - **5.2** Let us use the notation  $(x)_+ = \max(x,0)$  for the rest of this question. Consider

$$H(r, \sigma, T) := \mathbb{E}\left[\left(10 - \max_{0 \le t \le T} S_t\right)_+\right]$$

where the underlying stock price evolves as

$$dS_t = rS_t dt + \sigma S_t dW_t, \qquad S_0 = 1$$

where  $r, \sigma > 0$  are some constant parameters. Find two functions

$$\tilde{r}(c, r, \sigma)$$
 and  $\tilde{\sigma}(c, r, \sigma)$ 

such that for any c > 0

$$H(r, \sigma, cT) = H(\tilde{r}, \tilde{\sigma}, T).$$

**5.3** Show that if

$$\alpha := \frac{1}{\sigma} \left( r - \frac{\sigma^2}{2} \right) > 0,$$

then

$$\mathbb{E}\left[\left(10 - \max_{0 \le t \le T} S_t^{1/2}\right)_{\perp}\right] \le 10^{\alpha/\sigma} e^{-\frac{3}{8}\alpha^2 T} H(r, \sigma, T/4).$$

**Q6** Consider a portfolio  $(P_t, t \ge 0)$  described by the stochastic differential equation

$$\frac{dP_t}{P_t} = a_t \frac{dS_t^{(1)}}{S_t^{(1)}} + (1 - a_t) \frac{dS_t^{(2)}}{S_t^{(2)}}, \qquad P_0 = 1$$

where  $(S^{(1)}, S^{(2)})$  are two assets that evolve according to

$$\frac{dS_t^{(i)}}{S_t^{(i)}} = \mu_i dt + \sigma_i dW_t^{(i)}, \qquad S_0^{(i)} = 1 \qquad i = 1, 2$$

with  $(W_t^{(1)})_{t\geq 0}$  and  $(W_t^{(2)})_{t\geq 0}$  being two independent Brownian motions. Here  $\mu_1, \mu_2, \sigma_1, \sigma_2 > 0$  are some constant parameters, and  $(a_t, t \geq 0)$  is a continuous process adapted to  $\mathcal{F}_t := \sigma((W_u^{(1)}, W_u^{(2)}), u \in [0, t])$  with the property that  $a_t \in [0, 1]$  for all  $t \geq 0$ .

- **6.1** Let  $R_t = \log P_t$ . Express  $\mathbb{E}[R_t]$  in terms of  $(a_s, s \ge 0)$  and  $(\mu_1, \mu_2, \sigma_1, \sigma_2)$ .
- **6.2** Show that there exists some constant C > 0 independent of t and  $(a_s, s \ge 0)$  such that

$$\mathbb{E}[[R]_t] \le Ct \qquad \forall t \ge 0.$$

**6.3** Fix some  $\alpha > 0$  and consider

$$a_t := \frac{(S_t^{(1)})^{\alpha}}{(S_t^{(1)})^{\alpha} + (S_t^{(2)})^{\alpha}}.$$

By finding the distribution of  $S_t^{(1)}/S_t^{(2)}$  or otherwise, show that for any  $\epsilon \in (0,1)$ ,

$$\lim_{t \to \infty} \mathbb{P}(a_t \in [\epsilon, 1 - \epsilon]) = 0.$$

**6.4** Let  $m := \max_{i=1,2} \{\mu_i - \frac{1}{2}\sigma_i^2\}$ . Using  $a_t$  defined in the previous part, show that

$$\lim_{t \to \infty} t^{-1} \mathbb{E}[R_t] = m \quad \text{and} \quad \lim_{t \to \infty} t^{-2} \text{Var}(R_t) = 0$$

and conclude that  $R_t/t$  converges in probability to m as  $t \to \infty$ .

| Page number | _ | _ | _ | _ |
|-------------|---|---|---|---|
| 6 of 6      |   |   |   |   |

# Exam code MATH4181-WE01

# SECTION C

- Q7 (a) Write down the usual unbiased estimators for the mean and variance of a random variable X constructed from the sample  $X_1, X_2, \ldots, X_M$ . Your answer should make clear what conditions on the random variables  $X_1, X_2, \ldots, X_M$  are required to ensure the estimators are unbiased.
  - (b) Suppose the share price  $S_t$  of a risky asset evolves randomly according a geometric Brownian motion with drift  $\mu$  and volatility  $\sigma$ , and that interest is compounded continuously at rate r. Describe in detail the Monte Carlo algorithm that produces an approximate 95% confidence interval for the no-arbitrage price at time 0 of a European call option with strike price K and expiry date T from a sample of M standard Normal random variables.
  - (c) Consider an Asian call option on the same risky asset whose payoff at time T equals  $\max(A_S K, 0)$  where  $A_S = \frac{1}{n} \sum_{i=1}^n S_{T_i}$  for some fixed times  $0 < T_1 < T_2 < \cdots < T_n = T$ . Explain how you would modify your Monte Carlo algorithm from part (b) to price this Asian call option, using a sample of  $M \times n$  standard Normal random variables.

[Hint: for any sequence of times  $0 = T_0 < T_1 < \cdots < T_n = T$  the random variables  $\log(S_{T_i}/S_{T_{i-1}}), i = 1, \ldots, n$ , are independent Normals.]