

EXAMINATION PAPER

Examination Session: May/June

2022

Year:

Exam Code:

MATH41920-WE01

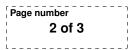
Title:

Geometry V

Time:	3 hours	
Additional Material provided:	Formula sheet	
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 20%, Section B is worth 60%, and Section C is worth 20%. Within Sections A and B, all questions carry equal marks.
	Students must use the mathematics specific answer book.

Revision:



SECTION A

- **Q1** (a) Let $A_1 = (1:1), A_2 = (1:2) \in \mathbb{RP}^1, B_1 = (1:1:0), B_2 = (1:1:2) \in \mathbb{RP}^2$. Prove or disprove that there exists a projective map $f : \mathbb{RP}^1 \to \mathbb{RP}^2$ with $f(A_k) = B_k, k = 1, 2$.
 - (b) Let $b = \{(x_1 : x_2 : x_3) \in \mathbb{RP}^2 \mid x_1 + x_3 = 0\}$ define a projective line in projective space. Prove or disprove that there exists a bijective map $g : \mathbb{R}^2 \to \mathbb{RP}^2 b$ with the following property: for any affine map $h : \mathbb{R}^2 \to \mathbb{R}^2$ there exists a projective map $H : \mathbb{RP}^2 \to \mathbb{RP}^2$ satisfying $H \circ g = g \circ h$.
- Q2 Let C_1, C_2, C_3 be three concentric circles of radii 1, 2 and 3 in the Euclidean plane. Is there a Möbius transformation mapping C_1, C_2, C_3 to three circles C'_1, C'_2, C'_3 , where
 - (a) C'_1, C'_2, C'_3 are unit circles centred at 0, 4 and $2 + 2i\sqrt{3}$?
 - (b) C'_1, C'_2, C'_3 are three concentric circles of radii 1,2 and 4?

SECTION B

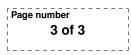
- **Q3** (a) Prove or disprove that for any distinct numbers $a, b, c \in \mathbb{R}$ there exists a number $d \in \mathbb{R}$ such that the cross ratio satisfies [a, b, c, d] = 1.
 - (b) Let $A_k, B_k \in \mathbb{RP}^2$ be given by

$$A_1 = (1:2:1), A_2 = (2:1:1), A_3 = (3:3:2), A_4 = (1:-1:0),$$

 $B_1 = (0:0:1), B_2 = (1:0:0), B_3 = (1:0:1), B_4 = (1:1:0).$

Prove or disprove that there exists a projective transformation of \mathbb{RP}^2 which maps B_k to A_k for k = 1, 2, 3, 4.

- (c) For $A \in \mathbb{RP}^2$ let F_A be the collection of projective transformations of \mathbb{RP}^2 which fix the point A. Prove that F_A is a group and that for any $B \in \mathbb{RP}^2$ we have: F_B and F_A are isomorphic.
- Q4 (a) Prove or disprove that the group of projective transformations of \mathbb{RP}^2 acts transitively on the collection of ordered pairs $\mathbb{RP}^2 \times \mathbb{RP}^2$.
 - (b) Prove or disprove that the group of projective transformations of \mathbb{RP}^2 acts transitively on the collection of lines $\{L_B \mid B = (b_1 : b_2 : b_3) \in \mathbb{RP}^2\}$, where $L_B = \{x \in \mathbb{RP}^2 \mid b_1x_1 + b_2x_2 + b_3x_3 = 0\}.$
 - (c) State the dual version of the problem of part (b).



- **Q5** Let γ_1 and γ_2 be two circles in \mathbb{E}^2 tangent at the point O. Let C_1 and C_2 be two other circles through O, both orthogonal to γ_1 and γ_2 . Let A, B, C, D be the intersection points of γ_i with C_j , $i, j \in \{1, 2\}$ other than the point O.
 - (a) Show that the points A, B, C, D lie on one line or circle.
 - (b) Is it always possible to find a circle or line C tangent to each of the four circles $\gamma_1, \gamma_2, C_1, C_2$?
 - (c) Let $M = \gamma_1 \cup \gamma_2 \cup C_1 \cup C_2$ be the union of the four circles considered above. How many different Möbius transformations are there taking the set M to itself (not necessarily pointwise)? Does the answer depend on the configuration?

Q6 Let *ABCDEF* be a regular hyperbolic hexagon with sides of length a > 0.

- (a) Let b be the length of the diagonal AC. Find $\cosh b$.
- (b) Let r_1 and r_2 be reflections with respect to the lines AC and AE. Let G be the group generated by r_1 and r_2 . Assume $\cosh a = 1 + \frac{\sqrt{2}}{3}$. Is it true that the group G acts discretely on \mathbb{H}^2 ? Justify your answer.
- (c) Let s_1 , s_2 , s_3 be reflections with respect to the lines AC, AD, CF respectively. Find the type of the isometry $f = s_3 s_2 s_1$.

SECTION C

- **Q7** Let $f(x) = A_f x + b_f$ be an affine transformation of \mathbb{R}^2 , with $A_f \in GL(2, \mathbb{R}), b_f \in \mathbb{R}^2$.
 - (a) Assume that A_f has real eigenvalues λ_1 , λ_2 satisfying $\lambda_1 \neq \lambda_2$, $\lambda_1 \neq 1$, $\lambda_2 \neq 1$. Prove that f is conjugate via an affine transformation to a diagonal linear map $g(x) = B_f x$, where $B_f \in GL(2, \mathbb{R})$ is a diagonal matrix.
 - (b) Assume that A_f has a real eigenvalue. Let G be the group generated by f. Prove or disprove that if G is finite then the eigenvalues of A_f have absolute value one.
 - (c) Assume that 1 is not an eigenvalue of $A_f \in GL(2, \mathbb{R})$. Prove that $f : \mathbb{R}^2 \to \mathbb{R}^2$ has a fixed point.