

EXAMINATION PAPER

Examination Session: May/June Year: 2022

Exam Code:

MATH4371-WE01

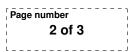
Title:

Functional Analysis and Applications IV

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.
	Students must use the mathematics specific answer book.

Revision:



SECTION A

- Q1 1.1 State the Hahn-Banach theorem.
 - **1.2** Let \mathcal{X} be a Banach space over a field \mathbb{F} . For a given $0 \neq x \in \mathcal{X}$ define

$$\widetilde{f}_x$$
: span $\{x\} \to \mathbb{F}$

- by $\widetilde{f}_x(\alpha x) = \alpha ||x||$ where $\alpha \in \mathbb{F}$. Show that \widetilde{f}_x is a linear functional and that $\left\|\widetilde{f}_x\right\|_{\operatorname{span}\{x\}^*} = 1$.
- **1.3** Prove that for any $0 \neq x \in \mathcal{X}$ there exists $f_x \in \mathcal{X}^*$ such that $f_x(x) = ||x||$ and $||f_x||_{\mathcal{X}^*} = 1$.
- **Q2** Consider the operator $T: \ell_{\infty} \to \ell_p$, with $1 \leq p < \infty$, defined by

$$T(\boldsymbol{a}) = \left(a_1, \frac{a_2}{2^{\alpha}}, \dots, \frac{a_n}{n^{\alpha}}, \dots\right).$$

- **2.1** Show that T is well defined when $\alpha > 1/p$. In that case also show that it is a linear operator and that it is bounded. Is T well defined when $\alpha = 1/p$?
- **2.2** Show that for any $\alpha > 1/p$ the operator T is injective but not surjective.
- **Q3** Let \mathcal{X}, \mathcal{Y} be Banach spaces.
 - **3.1** Define what it means for a linear operator $T : \mathcal{X} \to \mathcal{Y}$ to be compact.
 - **3.2** Let $f : \mathcal{X} \to \mathbb{C}$ be an unbounded linear functional (where we assume that such a functional exists). For a fixed $0 \neq x_0 \in \mathcal{X}$ let $T : \mathcal{X} \to \mathcal{X}$ be defined by $Tx = f(x)x_0$. Show that T has finite rank (i.e. $\dim(\mathcal{R}(T)) < \infty$) but is not compact.
- **Q4** Let $u : \mathbb{R} \to \mathbb{R}$ be defined by $u(x) = (1 + |x|)^{-1}$.
 - **4.1** For which $1 \leq p \leq \infty$ is $u \in W_0^{1,p}(\mathbb{R})$?
 - **4.2** Give an explicit $f \in H^{-1}(\mathbb{R})$ such that f(u) = 1.

SECTION B

Q5 Consider the subset $\mathcal{H} \subset \ell_2$ given by

Page number

3 of 3

$$\mathcal{H} = \left\{ oldsymbol{a} \in \ell_2 \mid \sum_{n \in \mathbb{N}} n^2 \left| a_n \right|^2 < \infty
ight\}.$$

5.1 Is \mathcal{H} closed with respect to the norm of ℓ_2 ? Prove your claim. **5.2** Let B be the set

$$B = \left\{ \boldsymbol{a} \in \mathcal{H} \mid \sum_{n \in \mathbb{N}} n^2 |a_n|^2 \le 1 \right\} \subset \mathcal{H}.$$

Show that for any $a \in B$ we have that

$$\sum_{n \ge N} |a_n|^2 \le \frac{1}{N^2}$$

and then prove that if $\{a_n\}_{n\in\mathbb{N}}$ is a sequence in B such that

$$(a_n)_j \underset{n \to \infty}{\longrightarrow} a_j, \qquad \forall j \in \mathbb{N}$$

for some $a \in B$ (component-wise convergence) then

$$\|\boldsymbol{a}_n-\boldsymbol{a}\|_{\ell_2} \xrightarrow[n\to\infty]{} 0.$$

- **Q6** Let \mathcal{X} and \mathcal{Y} be normed spaces and let E be a given subset of \mathcal{X} . Let $T : \mathcal{X} \to \mathcal{Y}$ be a given bounded linear operator.
 - **6.1** Show that if $T|_E = 0$ then $T|_{\mathcal{M}} = 0$ where $\mathcal{M} = \overline{\operatorname{span} E}$.
 - **6.2** Let $\{E_n\}_{n\in\mathbb{N}}$ be a given sequence of subsets of \mathcal{X} . Show that if $\{T_n\}_{n\in\mathbb{N}} \in B(\mathcal{X},\mathcal{Y})$ satisfy

$$T_n|_{E_i} = 0, \qquad \forall n \ge j$$

then if $\{T_n\}_{n\in\mathbb{N}}$ converges to $T\in B(\mathcal{X},\mathcal{Y})$ in the operator norm we have that

$$T|_{\overline{\operatorname{span}}\cup_{n\in\mathbb{N}}E_n}=0.$$

Q7 Consider $T: \ell_2 \to \ell_2$ defined by

$$T(x_1, x_2, x_3, x_4, x_5, x_6, \dots) = (0, x_1, 0, x_3, 0, x_5, \dots).$$

- 7.1 Compute T^2 .
- **7.2** Find $\rho(T)$, $\sigma(T)$, $\sigma_p(T)$, $\sigma_c(T)$ and $\sigma_r(T)$.
- **Q8** Let $T = i\frac{d}{dx}$ in the Hilbert space $L^2([0,1])$ with

 $\mathcal{D}(T) = \Big\{ f \in L^2([0,1]) : f \text{ absolutely continuous on } [0,1], f' \in L^2([0,1]), f(0) = \mathrm{i}f(1) \Big\}.$

- **8.1** Show that T is densely defined.
- **8.2** Show that T is symmetric.
- **8.3** Show that T is selfadjoint. You may use without proof that the general solution of $f' \mu f = g$ (for given $\mu \in \mathbb{C}$ and $g \in L^2([0, 1])$) is

$$f(x) = \exp(\mu x) \left(C + \int_0^x \exp(-\mu t)g(t) \,\mathrm{d}t \right),$$

for a constant $C \in \mathbb{C}$.