

EXAMINATION PAPER

Examination Session: May/June

Year:

2022

Exam Code:

MATH4381-WE01

Title:

Topics in Applied Mathematics IV

Time:	3 hours		
Additional Material provided:	Formula sheet.		
Materials Permitted:			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.	

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.		
	Students must use the mathematics specific answer book.		

Revision:

SECTION A

- Q1 A magnetic field is given by $\boldsymbol{B} = x\boldsymbol{e}_x + y\boldsymbol{e}_y + (3y 2z)\boldsymbol{e}_z$.
 - (a) Find the corresponding current density and Lorentz force.
 - (b) Could this be (i) a force-free equilibrium, or (ii) a magnetostatic equilibrium?
- **Q2** A two-dimensional magnetic field has the form $\boldsymbol{B}(x, y, t) = \nabla A(x, y, t) \times \boldsymbol{e}_z$, and evolves under the ideal induction equation with a velocity field of the form $\boldsymbol{u} = \nabla \psi(x, y, t) \times \boldsymbol{e}_z$.
 - (a) Write down the ideal induction equation for \boldsymbol{B} and show that

$$\frac{\partial A}{\partial t} = -\boldsymbol{u} \cdot \nabla A + a_0$$

for some constant a_0 .

- (b) If $S \subset \mathbb{R}^2$ is a fixed region with $\boldsymbol{u} \cdot \boldsymbol{n} = 0$ on the boundary (where \boldsymbol{n} is the normal direction on the boundary), show that $\int_S A^2 \, \mathrm{d}S$ is an ideal invariant.
- **Q3** Consider an expanding and incompressible elliptical shell defined by the following map:

$$x_1(R, \theta, \phi) = r_1(R)\sin(\theta)\cos(\phi),$$

$$x_2(R, \theta, \phi) = r_1(R)\sin(\theta)\sin(\phi),$$

$$x_3(R, \theta, \phi) = r_2(R)\cos(\theta).$$

Here $R \in [A, B]$, $\theta \in [0, \pi]$, $\phi \in [0, 2\pi)$, and $r_1(R) = r_2(R) = R$ in the undeformed state. Assume further that the shell is an **isotropic** hyperelastic material whose Cauchy stress tensor takes the form

$$\Sigma = \mathbf{F} \frac{\partial W}{\partial \mathbf{F}} - p\mathbf{I}.$$

Show that the critical stress differences $\sigma_{11} - \sigma_{33}$ and $\sigma_{22} - \sigma_{33}$ are the same as the spherical expansion case $r_1 = r_2$, if $r_1/R = \sqrt{R}/\sqrt{r_2}$.

You may quote any results derived in class regarding the stress differences in that case.

Figure 1: The deformation of a disc into a sphere passing continuously through spherical segments (Q4): (a) the original disc; (b) a half sphere; (c) the final sphere. The curve shown on all figures is the intersection of the surface and of a plane though the pole of the surface (as indicated in panel (b)). The length of this curve should be fixed during the deformation.

- Q4 (a) Describe a continuously parameterised deformation of a disc into a sphere, as depicted in Figure 1, which has the following properties. First, the body always represents a segment of a sphere with a circular boundary of constant height (see Figure 1(b)). Second, the arclength of the curve shown on Figure 1 is preserved. This curve represents the intersection of the surface and a vertical plane though the sphere's pole, as shown in Figure 1(b).
 - (b) Calculate the Cauchy deformation tensor of the body described in (a). Describe any strains induced in the body during this deformation.

SECTION B

- **Q5** Let D be the region $x \in [-\pi, \pi], y \in [-\pi, \pi]$.
 - (a) Define what is meant by a potential magnetic field.
 - (b) Find the potential magnetic field $\boldsymbol{B}(x,y)$ in D, satisfying the boundary conditions

$$B_x(-\pi, y) = B_x(\pi, y) = 0, \quad B_y(x, -\pi) = \cos x, \quad B_y(x, \pi) = 0,$$

and sketch the magnetic field lines.

(c) Using your result from (b), write down the potential field in D satisfying

$$B_x(-\pi, y) = B_x(\pi, y) = b_0, \quad B_y(x, -\pi) = \cos x, \quad B_y(x, \pi) = 0,$$

where b_0 is a constant. (You need not sketch the field lines in this case.)

- **Q6** In this question, we are interested in the possibility of dynamo action in a sphere r < 1 by a steady, incompressible velocity field $\boldsymbol{u} = u_{\theta}(r, \theta, \phi)\boldsymbol{e}_{\theta} + u_{\phi}(r, \theta, \phi)\boldsymbol{e}_{\phi}$. Let $q = \boldsymbol{x} \cdot \boldsymbol{B} = rB_r$, and assume the boundary condition $\boldsymbol{B}(1, \theta, \phi, t) = \boldsymbol{0}$.
 - (a) Use the (resistive) induction equation to show that

$$\frac{\partial q}{\partial t} = -\boldsymbol{u}\cdot\nabla q + \eta\Delta q.$$

(b) If V is the interior of the sphere, show that

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V} \frac{q^2}{2} \,\mathrm{d}V = -\eta \int_{V} |\nabla q|^2 \,\mathrm{d}V,$$

and hence argue that $|B_r| \to 0$ throughout V as $t \to \infty$.

(c) Now write $\boldsymbol{B} = \nabla \times (T\boldsymbol{x})$. Show that

$$\frac{\partial T}{\partial t} = -\boldsymbol{u} \cdot \nabla T + \eta \Delta T + f,$$

for some scalar function f(r, t) that depends on the particular choice of T.

[You may use without proof that $\Delta(T\boldsymbol{x}) = \boldsymbol{x}\Delta T + 2\nabla T$.]

(d) Hence prove that such a dynamo is impossible; *i.e.*, $|\mathbf{B}| \to 0$ inside the sphere as $t \to \infty$.

[It may help to choose the particular T with zero mean on every surface of constant r.]

Exam code MATH4381-WE01

Q7 Consider the following deformation of a hyperelastic body \mathcal{B} :

$$x_1(R, \Phi, Z) = r(Z)R\cos(\Phi),$$

$$x_2(R, \Phi, Z) = r(Z)R\sin(\Phi),$$

$$x_3(R, \Phi, Z) = z(Z).$$

The undeformed body is described by the parameter ranges $R \in [0, 1]$, $\Phi \in [0, 2\pi)$, $Z \in [0, H]$ and in this undeformed state r(Z) = 1, z(Z) = Z.

(a) Show the (cylindrical) Cauchy-Green strain tensor $E = (C - C^0)/2$ of this body is:

$$\mathbf{E} = \frac{1}{2} \begin{pmatrix} r^2 - 1 & 0 & r'rR \\ 0 & R^2(r^2 - 1) & 0 \\ r'rR & 0 & R^2(r')^2 + (z')^2 - 1 \end{pmatrix},$$
 (1)

where r' = dr/dZ and z' = dz/dZ.

- (b) Describe the strain indicated by the form of E given in (1), with reference to the permissible geometry of the deformed body.
- (c) Assuming the body is incompressible so $z' = 1/r^2$, and using an appropriate strain energy function, the Euler-Lagrange equations of this system lead to the following ODE:

$$-\frac{20(k_1+3N)}{r^3} + k_2 \left[\left(8-3r^2\right)r'' - 3r\left(r'^2+10\right) + 10r^3 \right] + \frac{40k_1}{r^5} = 0.$$
 (2)

Here N is an applied stretching load. An initially cylindrical body is observed to deform under the action of a small stretching load $N \ll 1$ to form a necking configuration where it stretches axially and contracts radially, as shown in Figure 2. At the body's caps z = 0 and z = H there is no radial stretching.

Demonstrate that the solutions to equation (2) indicate it is an appropriate model for this phenomenon.

Figure 2: For $\mathbf{Q7}(c)$. A initially cylindrical body (opaque) deforms by stretching and thinning around its midriff under the action of an applied stretching load.

Q8 Consider a surface $\mathbf{x}(s, h)$ parameterised as

$$\mathbf{x}(s,h) = \mathbf{r}(s) + h \big[\mathbf{b} + \eta(s) \mathbf{t}(s) \big],$$

where $h \in [-H, H]$, $s \in [0, L]$, and s is the arclength parameter for the threedimensional curve $\mathbf{r}(s)$ which lies along the centre of the surface. The curve has an associated (Frenet) orthonormal triad of unit vectors composed of the unit tangent vector $\mathbf{t} = d\mathbf{r}/ds$, and the normal \mathbf{n} and binormal \mathbf{b} vectors, which satisfy the following system of equations:

$$\frac{\mathrm{d}\mathbf{t}}{\mathrm{d}s} = \kappa \mathbf{n}, \qquad \frac{\mathrm{d}\mathbf{n}}{\mathrm{d}s} = -\kappa \mathbf{t} + \eta \kappa \mathbf{b}$$
$$\frac{\mathrm{d}\mathbf{b}}{\mathrm{d}s} = -\eta \kappa \mathbf{n}, \qquad \kappa = \frac{\mathrm{d}\mathbf{t}}{\mathrm{d}s} \cdot \mathbf{n}.$$

(a) Show that the metric (Cauchy deformation) tensor of this body takes the form

$$C = \begin{pmatrix} (1 + t\eta')^2 & \eta(1 + t\eta') \\ \eta(1 + t\eta') & 1 + \eta^2 \end{pmatrix}.$$

(b) Show that the Weingarten tensor (shape tensor) takes the form

$$\mathbf{D} = \begin{pmatrix} -\kappa (1+\eta^2)/(1+h\eta') & -\kappa\eta \\ 0 & 0 \end{pmatrix}.$$

- (c) Show this body transforms isometrically for all smooth \mathbf{r} and η .
- (d) Under suitable approximations it can be shown that the elastic energy functional of this system, under the action of an applied load N, takes the form

$$E(\theta, \theta'(s)) = \int_0^L \left[N \cos \theta(s) + \frac{1}{\theta'(s)^2} \right] \mathrm{d}s,$$

where θ is the polar angle of the unit tangent vector **t**. Find the family of functions $\theta(s)$ which are extrema of this energy functional (you may leave solutions in integral form).

Hint: you should use the substitution $v(\theta) = d\theta/ds$.