

EXAMINATION PAPER

Examination Session: May/June

2023

Year:

Exam Code:

MATH1607-WE01

Title:

Dynamics I

Time:	2 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Credit will be given for your answers to each question. All questions carry the same marks. Students must use the mathematics specific answer book.

Revision:

- **Q1 1.1** A particle of unit mass moves on the x-axis, acted on by a force F = 2v/t, where $t \ge 1$ denotes time, and v denotes velocity. The initial conditions are v(1) = 1 and x(1) = 0. Find x(t) for t > 1.
 - **1.2** A unit-mass particle moves along the positive x-axis, subject to a force $F = v^2/x$, where v is its velocity. Given the initial conditions v = x = 1 at time t = 0, find v(x) and hence x(t).
 - **1.3** A particle of mass m = 1 on the x-axis is attached to a spring with spring constant k = 4, and experiences a damping force of magnitude $4|\dot{x}|$. Find its position x(t), given the initial conditions x(0) = 1 and $\dot{x}(0) = -1$.
- **Q2** 2.1 A particle of mass m, moving along a line with speed v, collides elastically with stationary particle of mass 3m. The lighter particle then rebounds with speed u, while the heavier particle moves along the line with speed w > 0. Find the ratios u/v and w/v.
 - **2.2** A particle of unit mass and unit charge moves in a magnetic field $\mathbf{B} = \mathbf{k}$ and an electric field $\mathbf{E} = 2\mathbf{k}$. Its position and velocity at time t = 0 are $\mathbf{r}(0) = \mathbf{0}$ and $\mathbf{v}(0) = \mathbf{i} + \mathbf{j}$ respectively. Determine its position $\mathbf{r}(t)$ for t > 0.
- **Q3 3.1** A particle of mass m = 1 moves along the x-axis, subject to a force derived from the potential $V(x) = (x^2 + x 1) \exp(-x)$.
 - (i) Find the equilibrium positions of the particle.
 - (ii) Calculate the period P of small oscillations about the stable equilibrium.
 - (iii) How large does the speed u of the particle at x = 0 need to be, for it to escape to $x = \infty$?
 - **3.2** Particles of masses m and 2m move in opposite directions at the same speed along the x-axis. After colliding, the lighter particle moves at right angles to the x-axis, while the heavier one moves at an angle $\pi/6$ to the x-axis. Calculate the loss of energy in the collision, as a fraction β of the initial energy.
- **Q4** 4.1 Determine for which values of the constants α and β , if any, the force

 $\mathbf{F} = y \cosh(xy)\mathbf{i} + [\alpha z \sinh(yz) - \beta x \cosh(xy)]\mathbf{j} + y \sinh(yz)\mathbf{k}$

is conservative. For those values, calculate the corresponding potential V(x, y, z).

- **4.2** A unit-mass particle moves in an attractive central force of magnitude $5/r^2$, where (r, θ) are polar coordinates based at the centre of force. Initially its position and velocity are given by $\mathbf{r} = 2\mathbf{e}_r$ and $\mathbf{v} = \gamma \mathbf{e}_r + \mathbf{e}_{\theta}$ respectively, where γ is a positive constant.
 - (i) Using conservation of angular momentum and energy, determine for which values of γ the trajectory of the particle is bounded.
 - (ii) For which value of γ is the furthest distance of the particle from the centre of force equal to nine times the shortest distance?

- **Q5** 5.1 Find the solution u(x,t) of the wave equation $4 \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, subject to the initial conditions $u(x,0) = 1/\cosh(2x)$ and $\frac{\partial u(x,0)}{\partial t} = \sinh(2x)/\cosh^2(2x)$.
 - 5.2 A light rigid square plate of side-length L is pivoted at its centre so that it hangs vertically and can swing freely in the plane of the plate. Masses m are attached to three of its corners. Gravity acts downwards with acceleration g.
 - (i) Compute the moment of inertia I of the system about its pivot.
 - (ii) Obtain an expression for the energy E of the system, in terms of the angle $\theta(t)$ by which the plate deviates from its stable equilibrium.
 - (iii) The system starts from its stable equilibrium position with each mass having initial speed w. How large does w^2 have to be for the plate to rotate all the way round, passing its unstable equilibrium?