

EXAMINATION PAPER

Examination Session: May/June

2023

Year:

Exam Code:

MATH2051-WE01

Title:

Numerical Analysis II

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	Yes	Models Permitted: Casio FX83 series or FX85 series.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.		

Revision:

SECTION A

- **Q1** (a) Define what is meant by a floating-point number having a *finite precision* and a *finite range*.
 - (b) Starting with an interval [a, b], describe briefly the *bisection method* to find an approximate solution of f(x) = 0.
 - (c) Using the bisection method and some floating-point arithmetic to find the zeros of $f(x) = \sin x$, what are the *best absolute errors* one can expect for $x_0 = 0$ and $x_1 = \pi$? Justify your answers.
- **Q2** (a) Compute the error E(h; x) in the backward differentiation formula,

$$f'(x) = \frac{3f(x) - 4f(x-h) + f(x-2h)}{2h} + E(h;x).$$

- (b) Given f(x), f(x h/2), f(x h) and f(x 2h), construct a higher-order approximation to f'(x). Justify the order of your approximation, but no need to compute the error term explicitly.
- Q3 (a) Decompose the matrix (without pivoting)

$$A = \begin{pmatrix} -6 & 0 & -7 & 2\\ 12 & 6 & 8 & -4\\ 48 & -48 & 97 & -23\\ -42 & -36 & -34 & -4 \end{pmatrix}$$

into a product LU where L is unit lower triangular and U upper triangular.

- (b) Use this to solve the linear system Ax = b where b = (2, 3, 5, 7).
- (c) State briefly why one might prefer to use LU decomposition rather than computing A^{-1} to solve Ax = b.
- **Q4** Defining $T_n(x) := \cos(n\cos^{-1}x)$ for $n \in \{0, 1, \dots\}$ and $x \in [-1, 1]$, prove the following:
 - (a) $T_n(1) = 1$ and $T_n(-1) = (-1)^n$ for $n \in \{0, 1, \dots\}$;
 - (b) $T_n(x)T_k(x) = \frac{1}{2}[T_{n+k}(x) + T_{n-k}(x)]$ for $k, n \in \{0, 1, \dots\}$;
 - (c) that $T_n(x)$ is a polynomial of degree n for $x \in [-1, 1]$;
 - (d) with $c_0 = \pi$ and $c_n = \pi/2$ for $n \in \{1, 2, \dots\}$, the identity

$$\int_{-1}^{1} T_k(x) T_n(x) \frac{\mathrm{d}x}{\sqrt{1-x^2}} = c_n \delta_{kn}.$$

SECTION B

- **Q5** Given b > a and $f \in C^5([a, b])$, we seek $p \in \mathcal{P}_4$ such that p(a) = f(a), p'(a) = f'(a), p(b) = f(b), p'(b) = f'(b) and p''(b) = f''(b).
 - (a) Prove that any such p, if it exists, must satisfy

$$f(x) - p(x) = \frac{f^{(5)}(\xi)}{5!}(x-a)^2(x-b)^3$$

for every $x \in [a, b]$ with $\xi = \xi(x)$.

- (b) Prove that if such p exists, it is unique.
- (c) Prove the existence of p.
- **Q6** (a) Write down the Newton–Raphson method to solve f(x) = 0.
 - (b) Define what is meant for a sequence (x_n) to converge with order at least 2.
 - (c) Stating any relevant assumptions of f, prove that the Newton–Raphson method typically converges with order exactly 2.
 - (d) Let $f(x) = x^3 5$ and take $x_0 = 2$. Computing the first few Newton-Raphson iterates, estimate (to within ± 1) the smallest *n* such that $|f(x_n)| \le 10^{-1000}$.
- **Q7** (a) Given a vector norm $\|\cdot\|_*$, define what is meant by its *induced norm* for matrices.
 - (b) Define what is meant by the *condition number* $\kappa_*(\cdot)$, and explain briefly the significance of κ_* when solving the linear system Ax = b.
 - (c) Define what is meant by two (vector) norms $\|\cdot\|_*$ and $\|\cdot\|_{**}$ being *equivalent*.
 - (d) Show explicitly that $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ are equivalent norms.
 - (e) Given two equivalent vector norms || · ||_∗ and || · ||_{∗∗}, are their respective induced norms also equivalent? Justify your response.
- **Q8** (a) Define what is meant by an *interpolatory quadrature* formula $\mathcal{I}_n(f)$.
 - (b) Define what is meant by the *degree of exactness* of an interpolatory quadrature formula.
 - (c) With [a, b] = [-1, 1] and $x_* = \sqrt{3/7}$, determine the degree of exactness of

$$\mathcal{I}_4(f) = \frac{1}{90} \big[9f(-1) + 49f(-x_*) + 64f(0) + 49f(x_*) + 9f(1) \big].$$

(d) Given the closed Newton–Cotes formula

$$\mathcal{I}_2(f) = \frac{b-a}{6} \Big[f(a) + 4f\Big(\frac{a+b}{2}\Big) + f(b) \Big],$$

write down the formula for the composite quadrature $C_{2,m}(f)$. Given that the degree of exactness of \mathcal{I}_2 is 3, how does an error bound of $C_{2,m}(f)$ depend on m?

(e) Write down the composite quadrature derived from \mathcal{I}_4 above and obtain an error bound for it, clearly stating the dependence on m.