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SECTION A

Q1 Consider the Lagrangian

L =
1

2
(q̇2

1 + q̇2
2)− sin(q1 + q2) .

1.1 Is any of the coordinates q1, q2 ignorable?

1.2 Write down the Euler-Lagrange equations of motion for this system. You do
not need to solve them.

1.3 The Lagrangian L is invariant under time translations, so the energy

E =

(
2∑

i=1

q̇i
∂L

∂q̇i

)
− L

should be conserved. Show, by explicitly taking time derivatives, that E is
indeed conserved along physical paths.

1.4 Find another conserved quantity in this system by first identifying a transfor-
mation qi → qi + εai + . . . leaving the Lagrangian invariant to first order in ε,
and then constructing its associated Noether charge

Q =
2∑

i=1

ai
∂L

∂q̇i
.

Q2 Assume that we have a Lagrangian of the form

L =
1

2
(q̇2

1 + q̇2
2) + cos(q1)− 2 sin(q1q2 + q2

2) .

2.1 Write down the equations of motion for the system. You do not need to solve
them.

2.2 Show that q1(t) = q2(t) = 0 is a solution of the equations of motion.

2.3 Construct an approximate Lagrangian Lapp describing the behaviour of small
displacements away from q1(t) = q2(t) = 0.

[Hint: You might want to use cos(ε) = 1− 1
2
ε2 +O(ε4) and sin(ε) = ε+O(ε3).]

2.4 Construct the general solution of the equations of motion that follow from Lapp.
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Q3 At time t = 0, the wave function for a particle in one dimension is given by the
following expression:

ψ(t = 0, x) = C

(
1√
3
ψE=1(x)− eiqψE=2(x)

)
.

Here, ψE=1(x) and ψE=2(x) are orthonormal energy eigenfunctions of the system.
Both C and q are real constants.

3.1 Determine the constant C.

3.2 If we measure the energy of the particle at t = 0, what are the possible outcomes
of this measurement, and what are the probabilities for each of these outcomes?

3.3 How does this wave function evolve in time? (In other words, determine ψ(t, x)
for arbitrary t.)

Q4 Consider the elementary position and momentum operators

x̂ = x , p̂ = −i~ ∂

∂x
.

4.1 Compute the commutator [p̂2x̂, x̂] .

4.2 Show that the operator q̂ defined by

q̂ψ(x) = eig(x)p̂
(
e−ig(x)ψ(x)

)
= −i~e−ig(x) ∂

∂x

(
eig(x)ψ(x)

)
for an arbitrary function g(x) satisfies [x̂, q̂] = i~ .
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SECTION B

Q5 Consider a Lagrangian density

L(u, ux, ut, uxx) =
1

2
uxut − (ux)3 − 1

2
(uxx)2

depending on the field u(x, t), its first derivatives with respect to space and time
ux := ∂u/∂x and ut := ∂u/∂t, and the second space derivative uxx := ∂2u/∂x2 =
∂ux/∂x.

In this case the variational principle yields an Euler-Lagrange equation

∂L
∂u
− ∂

∂x

(
∂L
∂ux

)
− ∂

∂t

(
∂L
∂ut

)
+

∂2

∂x2

(
∂L
∂uxx

)
= 0

describing the motion of the field u. As usual u, ux, ut and uxx are to be considered
independent variables when taking derivatives in this expression.

5.1 Use the Euler-Lagrange equation just given to derive the explicit form of the
equation of motion for u. Show that if you define φ := ux, the equation of
motion can be written as

φt =
∂W (φ, φxx)

∂x

for some functionW that you should find, with φt := ∂φ/∂t and φxx = ∂2φ/∂x2.

5.2 Show that shifts of u given by u → u + ε are symmetries of the Lagrangian
density L. Find the Noether charge

Q =

∫ ∞
−∞

a
∂L
∂ut

dx

associated to these shifts, where a is the generator of the transformation acting
on u, and show by taking explicit time derivatives that it is indeed conserved.
You may assume that u and all of its spatial derivatives vanish as you take the
limit x→ ±∞.

5.3 The energy density in this system is defined to be

E := ut
∂L
∂ut

− L .

Use the equations of motion you found above to show that the time derivative
of the total energy

E(a, b) =

∫ b

a

E dx

contained in the interval (a, b) satisfies

dE(a, b)

dt
=
[
F (φ, φx, φxx, φxxx)

]b
a

for some function F of φ and its space derivatives φx, φxx, φxxx that you should
find. (We define φx := ∂φ/∂x and φxxx := ∂3φ/∂x3.)
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Q6 Consider a system described by the a-dependent Lagrangian

La = −
√

1− q̇12 − aq̇22 .

6.1 Find all values of a for which rotations around (q1, q2) = (0, 0) are symme-
tries, including the possibility that the Lagrangian changes up to a total time
derivative of a function F (q1, q2):

La → La + ε
dF (q1, q2)

dt
+O(ε2) .

6.2 Construct the generalised momenta p1, p2 associated to q1 and q2, and from
there the Hamiltonian Ha of the system, for arbitrary a. [Hint: When ex-
pressing the velocities in terms of generalised momenta, you might want to
first consider combinations of the form c1p

2
1 + c2p

2
2, for some appropriate con-

stants c1, c2.]

6.3 Define Q to be the Noether charge associated with rotations around the origin.
Show that the Poisson bracket {Ha, Q} vanishes if and only if a is such that
rotations around (q1, q2) = (0, 0) are symmetries.

Q7 This problem deals with the unit-mass harmonic oscillator, which has a Hamiltonian

Ĥ =
~ω
2

(
ââ† + â†â

)
,

when written in terms of the ladder operators â and â† which satisfy

[â, â†] = 1 .

7.1 Consider a normalised wave function ψ(t, x) which satisfies

â ψ(t, x) = αe−iωtψ(t, x) ,

for some real constant α. Compute the expectation values 〈x̂〉 and 〈p̂〉 when
the system is described by ψ(t, x) above, where

x̂ =

√
~

2ω
(â† + â) , p̂ = i

√
~ω
2

(â† − â) .

7.2 For this same wave function, also compute the energy expectation value 〈Ĥ〉.
7.3 Connect the wave function ψ(t, x) to what you know about the classical har-

monic oscillator. What does this particular wave function describe?

7.4 Compute (∆x̂)2(∆p̂)2 at t = 0. Comment on your result.
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Q8 Consider a unit-size box containing two non-interacting particles of unit mass m = 1.
The particles have coordinates x1 and x2 respectively, so

0 ≤ x1 ≤ 1 , 0 ≤ x2 ≤ 1 .

Use units for which ~ = 1.

8.1 Write down the expansion of a generic wave function for the two particles in
the box, on a basis of normalised energy eigen-wavefunctions for this system.
Motivate your answer.

8.2 Assume that at a particular time, the system is in the state described by the
wave function

ψ(x1, x2, t = t0) = C

[
sin (2πx1) sin (2πx2) +

1

2
sin (3πx1) sin (πx2)

]
,

for some normalisation constant C. Compute C.

8.3 Determine the probability density P (x1) for the system described by this wave
function.

8.4 Compute the expectation value 〈x1〉 at t = t0.

8.5 At t = t0, the position of particle 2 is measured, and found to be x2 = 1/4.
Describe what you now know about the wave function, and give the probability
density P (x1) just after this measurement.

8.6 Does the measurement of the position of particle 2 change the expectation
value 〈x1〉? Motivate your answer.
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