

EXAMINATION PAPER

Examination Session: May/June

2023

Year:

Exam Code:

MATH2071-WE01

Title:

Mathematical Physics II

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.

Revision:

SECTION A

Q1 Consider the Lagrangian

$$L = \frac{1}{2}(\dot{q}_1^2 + \dot{q}_2^2) - \sin(q_1 + q_2).$$

- **1.1** Is any of the coordinates q_1, q_2 ignorable?
- 1.2 Write down the Euler-Lagrange equations of motion for this system. You do not need to solve them.
- **1.3** The Lagrangian L is invariant under time translations, so the energy

$$E = \left(\sum_{i=1}^{2} \dot{q}_i \frac{\partial L}{\partial \dot{q}_i}\right) - L$$

should be conserved. Show, by explicitly taking time derivatives, that E is indeed conserved along physical paths.

1.4 Find another conserved quantity in this system by first identifying a transformation $q_i \rightarrow q_i + \epsilon a_i + \ldots$ leaving the Lagrangian invariant to first order in ϵ , and then constructing its associated Noether charge

$$Q = \sum_{i=1}^{2} a_i \frac{\partial L}{\partial \dot{q}_i} \,.$$

 $\mathbf{Q2}$ Assume that we have a Lagrangian of the form

$$L = \frac{1}{2}(\dot{q}_1^2 + \dot{q}_2^2) + \cos(q_1) - 2\sin(q_1q_2 + q_2^2).$$

- 2.1 Write down the equations of motion for the system. You do not need to solve them.
- **2.2** Show that $q_1(t) = q_2(t) = 0$ is a solution of the equations of motion.
- 2.3 Construct an approximate Lagrangian L_{app} describing the behaviour of small displacements away from q₁(t) = q₂(t) = 0.
 [Hint: You might want to use cos(ε) = 1 ¹/₂ε² + O(ε⁴) and sin(ε) = ε + O(ε³).]
- **2.4** Construct the general solution of the equations of motion that follow from L_{app} .

- Exam code MATH2071-WE01
- **Q3** At time t = 0, the wave function for a particle in one dimension is given by the following expression:

$$\psi(t=0,x) = C\left(\frac{1}{\sqrt{3}}\psi_{E=1}(x) - e^{iq}\psi_{E=2}(x)\right).$$

Here, $\psi_{E=1}(x)$ and $\psi_{E=2}(x)$ are orthonormal energy eigenfunctions of the system. Both C and q are real constants.

- **3.1** Determine the constant C.
- **3.2** If we measure the energy of the particle at t = 0, what are the possible outcomes of this measurement, and what are the probabilities for each of these outcomes?
- **3.3** How does this wave function evolve in time? (In other words, determine $\psi(t, x)$ for arbitrary t.)
- Q4 Consider the elementary position and momentum operators

$$\label{eq:constraint} \hat{x} = x\,, \quad \hat{p} = -i\hbar\frac{\partial}{\partial x}\,.$$

- **4.1** Compute the commutator $[\hat{p}^2 \hat{x}, \hat{x}]$.
- **4.2** Show that the operator \hat{q} defined by

$$\hat{q}\psi(x) = e^{ig(x)}\hat{p}\left(e^{-ig(x)}\psi(x)\right) = -i\hbar e^{-ig(x)}\frac{\partial}{\partial x}\left(e^{ig(x)}\psi(x)\right)$$

for an arbitrary function g(x) satisfies $[\hat{x}, \hat{q}] = i\hbar$.

SECTION B

Q5 Consider a Lagrangian density

$$\mathcal{L}(u, u_x, u_t, u_{xx}) = \frac{1}{2}u_x u_t - (u_x)^3 - \frac{1}{2}(u_{xx})^2$$

depending on the field u(x,t), its first derivatives with respect to space and time $u_x := \partial u/\partial x$ and $u_t := \partial u/\partial t$, and the second space derivative $u_{xx} := \partial^2 u/\partial x^2 = \partial u_x/\partial x$.

In this case the variational principle yields an Euler-Lagrange equation

$$\frac{\partial \mathcal{L}}{\partial u} - \frac{\partial}{\partial x} \left(\frac{\partial \mathcal{L}}{\partial u_x} \right) - \frac{\partial}{\partial t} \left(\frac{\partial \mathcal{L}}{\partial u_t} \right) + \frac{\partial^2}{\partial x^2} \left(\frac{\partial \mathcal{L}}{\partial u_{xx}} \right) = 0$$

describing the motion of the field u. As usual u, u_x , u_t and u_{xx} are to be considered independent variables when taking derivatives in this expression.

5.1 Use the Euler-Lagrange equation just given to derive the explicit form of the equation of motion for u. Show that if you define $\phi := u_x$, the equation of motion can be written as

$$\phi_t = \frac{\partial W(\phi, \phi_{xx})}{\partial x}$$

for some function W that you should find, with $\phi_t \coloneqq \partial \phi / \partial t$ and $\phi_{xx} = \partial^2 \phi / \partial x^2$.

5.2 Show that shifts of u given by $u \to u + \epsilon$ are symmetries of the Lagrangian density \mathcal{L} . Find the Noether charge

$$Q = \int_{-\infty}^{\infty} a \frac{\partial \mathcal{L}}{\partial u_t} \, dx$$

associated to these shifts, where a is the generator of the transformation acting on u, and show by taking explicit time derivatives that it is indeed conserved. You may assume that u and all of its spatial derivatives vanish as you take the limit $x \to \pm \infty$.

5.3 The energy density in this system is defined to be

$$\mathcal{E} \coloneqq u_t \frac{\partial \mathcal{L}}{\partial u_t} - \mathcal{L} \,.$$

Use the equations of motion you found above to show that the time derivative of the total energy

$$E(a,b) = \int_{a}^{b} \mathcal{E} \, dx$$

contained in the interval (a, b) satisfies

$$\frac{dE(a,b)}{dt} = \left[F(\phi,\phi_x,\phi_{xx},\phi_{xxx})\right]_a^b$$

for some function F of ϕ and its space derivatives ϕ_x , ϕ_{xx} , ϕ_{xxx} that you should find. (We define $\phi_x \coloneqq \partial \phi / \partial x$ and $\phi_{xxx} \coloneqq \partial^3 \phi / \partial x^3$.)

Q6 Consider a system described by the *a*-dependent Lagrangian

$$L_a = -\sqrt{1 - \dot{q_1}^2 - a \dot{q_2}^2} \,.$$

6.1 Find all values of a for which rotations around $(q_1, q_2) = (0, 0)$ are symmetries, including the possibility that the Lagrangian changes up to a total time derivative of a function $F(q_1, q_2)$:

$$L_a \to L_a + \epsilon \frac{dF(q_1, q_2)}{dt} + O(\epsilon^2).$$

- **6.2** Construct the generalised momenta p_1, p_2 associated to q_1 and q_2 , and from there the Hamiltonian H_a of the system, for arbitrary a. [Hint: When expressing the velocities in terms of generalised momenta, you might want to first consider combinations of the form $c_1p_1^2 + c_2p_2^2$, for some appropriate constants c_1, c_2 .]
- **6.3** Define Q to be the Noether charge associated with rotations around the origin. Show that the Poisson bracket $\{H_a, Q\}$ vanishes if and only if a is such that rotations around $(q_1, q_2) = (0, 0)$ are symmetries.
- Q7 This problem deals with the unit-mass harmonic oscillator, which has a Hamiltonian

$$\hat{H} = rac{\hbar\omega}{2} \left(\hat{a} \hat{a}^{\dagger} + \hat{a}^{\dagger} \hat{a}
ight) \, ,$$

when written in terms of the ladder operators \hat{a} and \hat{a}^{\dagger} which satisfy

$$[\hat{a}, \hat{a}^{\dagger}] = 1$$
.

7.1 Consider a normalised wave function $\psi(t, x)$ which satisfies

$$\hat{a}\,\psi(t,x) = \alpha e^{-i\omega t}\psi(t,x)\,,$$

for some real constant α . Compute the expectation values $\langle \hat{x} \rangle$ and $\langle \hat{p} \rangle$ when the system is described by $\psi(t, x)$ above, where

$$\hat{x} = \sqrt{\frac{\hbar}{2\omega}} (\hat{a}^{\dagger} + \hat{a}), \quad \hat{p} = i\sqrt{\frac{\hbar\omega}{2}} (\hat{a}^{\dagger} - \hat{a}).$$

- **7.2** For this same wave function, also compute the energy expectation value $\langle \hat{H} \rangle$.
- **7.3** Connect the wave function $\psi(t, x)$ to what you know about the classical harmonic oscillator. What does this particular wave function describe?
- **7.4** Compute $(\Delta \hat{x})^2 (\Delta \hat{p})^2$ at t = 0. Comment on your result.

Q8 Consider a unit-size box containing two non-interacting particles of unit mass m = 1. The particles have coordinates x_1 and x_2 respectively, so

$$0 \le x_1 \le 1, \quad 0 \le x_2 \le 1.$$

Use units for which $\hbar = 1$.

- 8.1 Write down the expansion of a generic wave function for the two particles in the box, on a basis of normalised energy eigen-wavefunctions for this system. Motivate your answer.
- 8.2 Assume that at a particular time, the system is in the state described by the wave function

$$\psi(x_1, x_2, t = t_0) = C \left[\sin(2\pi x_1) \sin(2\pi x_2) + \frac{1}{2} \sin(3\pi x_1) \sin(\pi x_2) \right] \,,$$

for some normalisation constant C. Compute C.

- **8.3** Determine the probability density $P(x_1)$ for the system described by this wave function.
- **8.4** Compute the expectation value $\langle x_1 \rangle$ at $t = t_0$.
- **8.5** At $t = t_0$, the position of particle 2 is measured, and found to be $x_2 = 1/4$. Describe what you now know about the wave function, and give the probability density $P(x_1)$ just after this measurement.
- **8.6** Does the measurement of the position of particle 2 change the expectation value $\langle x_1 \rangle$? Motivate your answer.