

EXAMINATION PAPER

Examination Session: May/June

2023

Year:

Exam Code:

MATH2581-WE01

Title:

Algebra II

Time:	3 hours		
Additional Material provided:			
Materials Permitted:			
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.	

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.				

Revision:

SECTION A

- **Q1** (a) Find all irreducible polynomials in $(\mathbb{Z}/2)[x]$ of degree less than or equal to two. Carefully explain your reasoning.
 - (b) Factorise the polynomial x⁵ + x⁴ + x² + 1 into irreducible polynomials in the ring (ℤ/2)[x]. Justify your answer.
- **Q2** (a) Let R be an integral domain with finitely many elements. Show that R is a field.
 - (b) Let S be a commutative ring with finitely many elements. Show that every prime ideal of S is also maximal.
 - (c) Give an example of a commutative ring with 9 elements which is not an integral domain. Justify your answer.
 - (d) Give an example of a commutative ring with 9 elements which is an integral domain. Justify your answer.
- **Q3 3.1** Let G be a finite group. Show that for all $g \in G$ the order of g, $\operatorname{ord}(g)$, divides the order |G| of G. (Carefully state all results that you use.)
 - **3.2** Let G be a finite group of even order 2m, and let H be a subgroup of order m, where $m \in \mathbb{N}$. Show that H is a normal subgroup of G.
 - **3.3** Let $\phi: D_4 \to A_4$ be a homomorphism. Show that ϕ is not injective.
- **Q4 4.1** Determine all *abelian* groups of order 500, up to isomorphism. (Carefully state all results you use.)
 - **4.2** Determine all *proper* subgroups of a group of order 50, up to isomorphism. (Carefully state all results you use.)

SECTION B

- **Q5** Let *R* be the set of polynomials in $\mathbb{Q}[x]$ whose constant term is an integer. That is $R = \{a + xh(x) : a \in \mathbb{Z}, h(x) \in \mathbb{Q}[x]\}.$
 - (a) Show that R is a subring of $\mathbb{Q}[x]$, and determine its units.
 - (b) Show that the irreducible elements in R are $\pm p$ where p is a prime in \mathbb{Z} and the polynomials f(x) that are irreducible in $\mathbb{Q}[x]$ and have constant term ± 1 .
 - (c) Show that x cannot be written as a product of irreducible elements in R.
- Q6 (a) State the Chinese Remainder Theorem for P.I.D.s. (You do not need to define the notion of coprime elements.)
 - (b) Consider the following polynomials in $(\mathbb{Z}/3)[x]$.

$$f_1(x) = x + \overline{1}, \ f_2(x) = x^3 + \overline{2}x + \overline{1}, \ f_3(x) = x^2 + x + \overline{2}.$$

- (i) Show that the polynomials $f_1(x), f_2(x), f_3(x)$ are pairwise coprime in the ring $(\mathbb{Z}/3)[x]$.
- (ii) Find a $g(x) \in (\mathbb{Z}/3)[x]$ that satisfies the following three properties: a) $g(\overline{2}) = \overline{1}$,
 - b) $f_2(x)$ divides $g(x) (x^2 + \overline{2}x + \overline{2})$ in $(\mathbb{Z}/3)[x]$ and
 - c) $f_3(x)$ divides $g(x) \overline{2}$ in $(\mathbb{Z}/3)[x]$.

(Hint: Rewrite the above conditions in terms of the image of g(x) in the quotient rings $(\mathbb{Z}/3)[x]/(f_i(x))$ for i = 1, 2, 3 and use C.R.T.)

(iii) Determine all polynomials $g(x) \in (\mathbb{Z}/3)[x]$ with the above three properties. What is the smallest possible degree of such a polynomial?

Q7 Let G be a group. Define a map $\alpha : G \times G \to G$ such that for each pair $g, h \in G$,

$$\alpha(g,h) = ghg^{-1}h^{-1}$$

- **7.1** Show that for any $g, h \in G$, $\alpha(h, g) = \alpha(g, h)^{-1}$.
- **7.2** Given $g \in G$, let $\Gamma(g) := \{h \in G : \alpha(g, h) = e\}$, where e is the identity element of G. Show that $\Gamma(g)$ is a subgroup of G for each $g \in G$.
- **7.3** Let $S \subseteq G$ denote the set $S := \{\alpha(g, h) : g, h \in G\}$. Let H be the group generated by S, i.e., the set

$$H := \{ \alpha(g_1, h_1) \alpha(g_2, h_2) \cdots \alpha(g_k, h_k) : g_1, \dots, g_k, h_1, \dots, h_k \in G, k \ge 1 \}$$

of all finite products of elements of S. (You may assume without proof that it is indeed a group.) Show that H is a normal subgroup of G.

- **7.4** With the notation of the previous part, show that G is an abelian group if, and only if, $H = \{e\}$.
- **7.5** Determine the corresponding group H when $G = D_6$.
- **Q8** 8.1 Determine the size of the conjugacy class of $\sigma = (23)(412)(651)$ in S_6 .
 - 8.2 Prove or disprove: the permutation

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 2 & 1 & 6 & 5 \end{pmatrix}$$

belongs to A_6 .

- **8.3** Determine, with justification, the normal subgroups of S_4 . (Carefully state all results that you use.)
- **8.4** Show that there are *no* elements $\sigma \in S_4$ that commute with all other elements of S_4 . (*Hint:* Use the previous part.)