

EXAMINATION PAPER

Examination Session: May/June

2023

Year:

Exam Code:

MATH2617-WE01

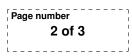
Title:

Elementary Number Theory II

Time:	2 hours	
Additional Material provided:		
Matariala Darmittadı		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators
		is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.	

Revision:

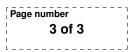


SECTION A

Q1 1.1 Solve the congruence 458z ≡ 3 (mod 129). (Show all steps involved.)
1.2 Find a solution x ∈ Z, 0 ≤ x < 132 to the system of congruences

$$x \equiv 7 \pmod{12}$$
$$x \equiv 5 \pmod{11}.$$

- **1.3** Let $a, b \in \mathbb{N}$, satisfying gcd(a, b) = 1. Let d denote gcd(2a + b, a b). Show that d|3. Give an example of a pair (a, b) with d = 1, and an example of a pair with d = 3.
- **Q2** 2.1 Can 1666 be represented as a sum of two squares $a^2 + b^2$, with $a, b \in \mathbb{Z}$? Justify your answer.
 - **2.2** Find two different representations $c^2 + d^2 = a^2 + b^2 = 325$, where a, b, c, d are non-negative integers, and $\{a, b\}$ is not the same set as $\{c, d\}$.
 - **2.3** Show that 105 is a quadratic residue modulo 991. You may use without proof that 991 is a prime. (Show all steps involved.)



SECTION B

- **Q3** Given $n \in \mathbb{N}$, let $\phi(n)$ denote the value of Euler's ϕ function at n, i.e., $\phi(n)$ is the number of elements in the set $\{1 \le a \le n : \gcd(a, n) = 1\}$.
 - **3.1** Compute $\phi(1260)$. (Show all steps involved.)
 - **3.2** Let $a, b \in \mathbb{N}$. Show that if a|b then $\phi(a)|\phi(b)$.
 - **3.3** Find the last digit of $3^{7^{101}}$. (Show all steps involved.)
 - **3.4** Show that $x^{92} \equiv 6 \pmod{31}$ has no solutions. (*Hint*: Use a similar argument as for the previous part to reduce the problem to solving a quadratic congruence.)
- Q4 4.1 Determine the number of primitive roots modulo 101.
 - **4.2** Show that for any $1 \le a \le 100$ that is *not* a primitive root, the order $\operatorname{ord}_{101}(a)$ of *a* modulo 101 either divides 50 or divides 20.
 - **4.3** Show that 2 is a primitive root modulo 101. (*Hint*: Compute $2^{50} \pmod{101}$ using Euler's criterion. Use that calculation to show that $2^{20} \not\equiv 1 \pmod{101}$ also.)
 - **4.4** Show that $2^a \equiv 2^b \pmod{101}$ if, and only if, $a \equiv b \pmod{100}$. Note that there are two directions to prove here.