

EXAMINATION PAPER

Examination Session: May/June

2023

Year:

Exam Code:

MATH2647-WE01

Title:

Probability II

Time:	2 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.		

Revision:

SECTION A

Q1 Let $([0,1], \mathcal{B}[0,1], \mathsf{P})$ be the canonical probability space. Suppose that \mathcal{D}_1 and \mathcal{D}_2 are two collections of events in $\mathcal{B}[0,1]$, where

$$\mathcal{D}_1 = \{ [a, b] : 0 \le a < b < 1 \}, \qquad \mathcal{D}_2 = \{ [c, d) : 0 \le c < d \le 1 \}.$$

- (a) Show that every event in \mathcal{D}_2 can be written as a countable limit of events in \mathcal{D}_1 .
- (b) Show that every event in \mathcal{D}_1 can be written as a countable limit of events in \mathcal{D}_2 .
- (c) Let \mathcal{G} be a sigma-field satisfying $\mathcal{D}_1 \subseteq \mathcal{G} \subseteq \mathcal{B}[0,1]$. Is it true that $\mathcal{D}_2 \subseteq \mathcal{G}$? Justify your answer.
- (d) Suppose that a sigma-field \mathcal{F} satisfies $\mathcal{D}_2 \subseteq \mathcal{F} \subseteq \mathcal{B}[0,1]$. Is it true that $\mathcal{D}_1 \subseteq \mathcal{F}$? Justify your answer.
- **Q2** Let $(X_n)_{n\geq 1}$ be random variables such that $X_n \sim \mathsf{Exp}(n^2)$, i.e., $\mathsf{P}(X_n > y) = e^{-n^2 y}$ for all $y \geq 0$. Define $Y = \sum_{k\geq 1} X_k$.
 - (a) Derive a formula for the expectation $\mathsf{E}Y$.
 - (b) Is it true that Y > 0 is a finite random variable, i.e., $\mathsf{P}(Y < \infty) = 1$? Justify your answer.

SECTION B

- **Q3** Let b_n be the probability that n independent Bernoulli trials (with individual success probability $p \in (0, 1)$) result in an odd number of successes.
 - (a) Compute b_0 , b_1 , and b_2 .
 - (b) Use generating functions to derive a simple closed formula for b_n and check that it gives correct values for n = 0, 1, 2.
 - (c) Find $\lim_{n\to\infty} b_n$ and explain your result.
- **Q4** Let $(Z_k)_{k\geq 1}$ be independent random variables with common distribution $\mathcal{N}(0,1)$. For integer $n \geq 1$, let

$$S_n = \frac{1}{n} ((Z_1)^2 + (Z_2)^2 + \dots + (Z_n)^2).$$

- (a) Show that S_n converges in L^2 and find its limit.
- (b) Does S_n converge almost surely? If so, find its limit. If not, explain why.
- (c) Does S_n converge in probability? If so, find its limit. If not, explain why.

In your answer you should define the relevant modes of convergence, provide a detailed justification, and give a clear statement of any result you use.