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SECTION A

Q1 Let
(
[0, 1],B[0, 1], P

)
be the canonical probability space. Suppose that D1 and D2

are two collections of events in B[0, 1], where

D1 =
{

[a, b] : 0 ≤ a < b < 1
}
, D2 =

{
[c, d) : 0 ≤ c < d ≤ 1

}
.

(a) Show that every event in D2 can be written as a countable limit of events in D1.

(b) Show that every event in D1 can be written as a countable limit of events in D2.

(c) Let G be a sigma-field satisfying D1 ⊆ G ⊆ B[0, 1]. Is it true that D2 ⊆ G?
Justify your answer.

(d) Suppose that a sigma-field F satisfies D2 ⊆ F ⊆ B[0, 1]. Is it true that
D1 ⊆ F? Justify your answer.

Q2 Let (Xn)n≥1 be random variables such that Xn ∼ Exp(n2), i.e., P(Xn > y) = e−n2y

for all y ≥ 0. Define Y =
∑

k≥1 Xk.

(a) Derive a formula for the expectation EY .

(b) Is it true that Y > 0 is a finite random variable, i.e., P(Y < ∞) = 1? Justify
your answer.
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SECTION B

Q3 Let bn be the probability that n independent Bernoulli trials (with individual success
probability p ∈ (0, 1)) result in an odd number of successes.

(a) Compute b0, b1, and b2.

(b) Use generating functions to derive a simple closed formula for bn and check
that it gives correct values for n = 0, 1, 2.

(c) Find lim
n→∞

bn and explain your result.

Q4 Let (Zk)k≥1 be independent random variables with common distribution N (0, 1).
For integer n ≥ 1, let

Sn =
1

n

(
(Z1)

2 + (Z2)
2 + · · ·+ (Zn)2

)
.

(a) Show that Sn converges in L2 and find its limit.

(b) Does Sn converge almost surely? If so, find its limit. If not, explain why.

(c) Does Sn converge in probability? If so, find its limit. If not, explain why.

In your answer you should define the relevant modes of convergence, provide a
detailed justification, and give a clear statement of any result you use.
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