

EXAMINATION PAPER

Examination Session: May/June

2023

Year:

Exam Code:

MATH3011-WE01

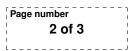
Title:

Analysis III

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Materials i erifilited.		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.	

Revision:



SECTION A

- **Q1** (a) (i) Let ϕ be a simple measurable function taking only nonnegative values. State the definition of the integral $\int \phi$ of ϕ .
 - (ii) Let f be a measurable function taking values in the nonnegative extended reals. State the definition of the integral $\int f$ of f.
 - (b) State the Monotone Convergence Theorem.
 - (c) Let f, g be measurable functions taking values in the nonnegative extended reals. Show that if $f \leq g$ then $\int f \leq \int g$. (Hint: you may use that for nonnegative simple measurable functions $\phi \leq \psi$ implies $\int \phi \leq \int \psi$.)
- Q2 In this question all functions are assumed to have domain [0, 1] and take values in the extended reals. Let g be a measurable and integrable function and for each $t \in [0, 1]$ consider the function

$$h_t(x) = \begin{cases} g(x) & \text{if } 0 \le x < t, \\ 0 & \text{otherwise.} \end{cases}$$

- (a) Is h_t integrable? Justify your answer.
- (b) State the Dominated Convergence Theorem.
- (c) Define $F(t) = \int h_t$. Show that if $(t_n)_n$ is any sequence in [0, 1] that converges to t as $n \to \infty$, then $F(t_n)$ converges to F(t) as $n \to \infty$. (Hint: use linearity of the integral for integrable functions.)
- (d) State what it means for a real-valued function to be continuous at a point $x \in [0, 1]$.
- **Q3** 3.1 Let $E \subset \mathbb{R}$ be measurable and let $1 \leq p < \infty$.
 - (a) State the definition of $L^p(E)$.
 - (b) Prove that if $f \in L^p(E)$ and $E_{\alpha} = \{x \in E : |f(x)| \ge \alpha\}, \alpha > 0$, then $\mu(E_{\alpha}) \to 0$ as $\alpha \to \infty$ (where μ denotes the Lebesgue measure).
 - **3.2** Let q > 1. If $f \in L^q[0, 1]$, then is it true that $f \in L^r[0, 1]$ for $1 \le r < q$? Give a full justification of your response.
- **Q4** Let \mathcal{H} be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$. Let the norm derived from $\langle \cdot, \cdot \rangle$ be denoted by $\|\cdot\|$.
 - (a) State Bessel's Inequality for an orthonormal set $U = \{u_{\alpha} : \alpha \in I\} \subset \mathcal{H}$.
 - (b) Suppose that for any $x \in \mathcal{H}$, $x = \sum_{\alpha \in I} \langle x, u_{\alpha} \rangle u_{\alpha}$ where the sum has at most countably many non-zero terms and converges unconditionally in \mathcal{H} . Prove Parseval's Identity.

SECTION B

Q5 Let $C \subset [0, 1]$ be the middle-third Cantor set.

- (a) Explain why C is a Borel set.
- (b) Show that C has Lebesgue measure 0.
- (c) State what it means for a point x to be an accumulation point of a set $E \subset \mathbb{R}$.
- (d) Define the function $g: [0,1] \to \mathbb{R}$ by

$$g(x) = \begin{cases} x & \text{if } x \in C, \\ 0 & \text{otherwise.} \end{cases}$$

Is g Riemann integrable? Justify your answer.

Q6 In the following $A, B, B_n, E, E_n \subset \mathbb{R}$. Recall that the symmetric difference of two sets A and B is

$$A\Delta B = (A - B) \cup (B - A).$$

- (a) Show that outer measure is monotonic: namely if $A \subset B$ then $\mu^*(A) \leq \mu^*(B)$.
- (b) Show that if $\mu^*(E \Delta B_n) \to 0$ as $n \to \infty$ then $\mu^*(B_n) \to \mu^*(E)$ as $n \to \infty$.
- (c) Suppose that E_n is a finite union of intervals and suppose that $\mu^*(E \Delta E_n) \to 0$ as $n \to \infty$. Show that we have

$$\mu^*(A) = \mu^*(E \cap A) + \mu^*(E^c \cap A).$$

Q7 Let $E \subseteq \mathbb{R}$ be measurable. Let $1 \leq p, q < \infty$. Consider the linear space $L^p(E) \times L^q(E)$ where addition and scalar multiplication are defined pointwise as $(f_1, g_1) + (f_2, g_2) = (f_1 + f_2, g_1 + g_2)$ and $\lambda(f, g) = (\lambda f, \lambda g)$ for $\lambda \in \mathbb{C}$. Define $\|(\cdot, \cdot)\| : L^p(E) \times L^q(E) \to \mathbb{R}_{\geq 0}$ as

$$||(f,g)|| = (||f||_{L^p}^2 + ||g||_{L^q}^2)^{1/2}, \quad (f,g) \in L^p(E) \times L^q(E).$$

- **7.1** Prove that $\|(\cdot, \cdot)\|$ is a norm on $L^p(E) \times L^q(E)$ for $1 \le p, q < \infty$.
- **7.2** Prove that $(L^p(E) \times L^q(E), \|(\cdot, \cdot)\|)$ is a Banach space for $1 \le p, q < \infty$.
- **7.3** Using your response to **7.2** or otherwise, state conditions that normed linear spaces X, Y, with norms $\|\cdot\|_X$, $\|\cdot\|_Y$ respectively, must satisfy to ensure that $X \times Y$ with norm $\|(x, y)\| = (\|x\|_X^2 + \|y\|_Y^2)^{1/2}$ is a Banach space.
- **7.4** Give an example of normed linear spaces $(X, \|\cdot\|_1)$, $(Y, \|\cdot\|_2)$, such that $X \times Y$ with norm $\|(x, y)\| = (\|x\|_1^2 + \|y\|_2^2)^{1/2}$ is not a Banach space. Briefly justify your response.
- **Q8 8.1** Consider $(L^3[0,1], \|\cdot\|_{L^3})$. Is the norm $\|\cdot\|_{L^3}$ derived from an inner product? Justify your response.
 - **8.2** Let $E \subset \mathbb{R}$ be measurable. Let $f \in L^1(E)$. Prove that

$$\lim_{n \to \infty} \int_E f(x)(\cos(nx))^2 = \frac{1}{2} \int_E f(x).$$

You may use without proof that since $f \in L^1(E)$, for any $\epsilon > 0$, there exists a step function ψ such that $||f - \psi||_{L^1} < \epsilon$. You should otherwise give a full justification.