

## EXAMINATION PAPER

Examination Session: May/June

Year: 2023

Exam Code:

MATH3021-WE01

### Title:

# Differential Geometry III

| Time:                         | 3 hours |                                                               |
|-------------------------------|---------|---------------------------------------------------------------|
| Additional Material provided: |         |                                                               |
| Materials Permitted:          |         |                                                               |
| Calculators Permitted:        | No      | Models Permitted: Use of electronic calculators is forbidden. |

| Instructions to Candidates: | Answer all questions.<br>Section A is worth 40% and Section B is worth 60%. Within<br>each section, all questions carry equal marks.<br>Students must use the mathematics specific answer book. |  |  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                             |                                                                                                                                                                                                 |  |  |
|                             |                                                                                                                                                                                                 |  |  |

**Revision:** 

### SECTION A

- **Q1** Let  $\alpha : \mathbb{R} \to \mathbb{R}^3$ ,  $\alpha(t) = (t^2, t^3, t^4)$ . Let  $K \subset \mathbb{R}$  be the set of all those  $t \in \mathbb{R}$  for which the following holds :  $\alpha$  is not regular at t and  $\alpha$  has vanishing curvature at t. Give the set K. Give the domain of the torsion of the curve  $\alpha$ . Calculate the torsion of the curve  $\alpha$ .
- **Q2** Let  $c: [0, 2\pi] \to \mathbb{R}^2$ ,  $c(u) = (u \sin(u), 1 \cos(u))$ .
  - (a) Calculate the torsion and curvature of c in terms of  $\sin(u/2)$ . Identify the domains of curvature and torsion. You may use (without proof) the trigonometric relation

$$\cos u = \cos^2(u/2) - \sin^2(u/2).$$

- (b) Prove or disprove that the length L(c) of the curve c satisfies L(c) < 4.
- **Q3** Let  $S \subset \mathbb{R}^3$  be a regular surface,  $\lambda > 0$ , and

$$\widetilde{S} := \{ \lambda \mathbf{p} : \mathbf{p} \in S \},\$$

with the corresponding map  $\Phi: S \to \widetilde{S}$ ,  $\Phi(\mathbf{p}) = \lambda \mathbf{p}$ . Prove that  $\widetilde{S}$  is regular. Prove that  $\Phi$  is a smooth map of regular surfaces which maps geodesics to geodesics. Derive relations between the Gauss curvature of S at  $\mathbf{p} \in S$  and the Gauss curvature of  $\widetilde{S}$  at  $\Phi(\mathbf{p}) \in \widetilde{S}$ .

Q4 Let  $S \subset \mathbb{R}^3$  be a regular surface and  $P \subset \mathbb{R}^3$  be a Euclidean plane such that the intersection  $S \cap P$  is the trace of a smooth regular curve  $c : I \to S$ , with  $I \subset \mathbb{R}$  a suitable interval. Show the following: If c is constant speed and if the planes  $T_{c(t)}S$  and P intersect perpendicularly for all  $t \in I$ , then c is a geodesic.

#### SECTION B

- **Q5** Let  $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ .
  - (a) Let  $\beta : [a, b] \to \mathbb{R}^2$  be a smooth regular parametrized plane curve (not necessarily unit speed). Define the curvature of  $\beta$ . Show that the curvature of  $\beta$  is given by

$$\kappa_{\beta}(u) = \frac{(\beta'(u)J) \cdot \beta''(u)}{\|\beta'(u)\|^3},$$

where we consider  $\beta'(u), \beta''(u)$  as row vectors and where  $\mathbf{a} \cdot \mathbf{b}$  denotes the Euclidean inner product of the row vectors  $\mathbf{a}, \mathbf{b} \in \mathbb{R}^2$ .

- (b) Let  $\alpha : [0, L] \to \mathbb{R}^2$  be a smooth unit speed plane curve with strictly positive curvature  $\kappa_{\alpha} > 0$ . Define an involute  $\beta$  of  $\alpha$  and calculate the curvature of the involute  $\beta : [0, L] \to \mathbb{R}^2$  which passes through the point  $\alpha(0)$ .
- **Q6** Let  $S \subset \mathbb{R}^3$  be the set of all points  $(x, y, z) \in \mathbb{R}^3$  satisfying  $x \sin z = y \cos z$ .
  - (a) Show that S is a regular surface by showing that it is the pre-image of a regular value.

- Exam code MATH3021-WE01
- (b) Show that  $\mathbf{x}(u, v) = (v \cos u, v \sin u, u)$  is a parametrisation of S which satisfies the following property : For all  $p \in S$  there exists  $(u, v) \in \mathbb{R}^2$  with  $\mathbf{x}(u, v) = p$ . Using this parametrisation, calculate the mean curvature and the Gauss curvature of S. Prove or disprove that one of these curvatures at any point  $(x, y, z) \in S$  depends only on the value  $x^2 - y^2$ .
- **Q7** Let  $I \subset \mathbb{R}$  be an interval, M > 0, and  $\alpha : I \to \mathbb{R}^3$  be injective and a smooth unit speed curve with curvature  $\kappa : I \to (0, M) \subset \mathbb{R}$ . Let  $S_r \subset \mathbb{R}^3$  be parametrized by

$$\mathbf{x}(u, v) = \alpha(u) + r(\cos(v) \cdot \mathbf{n}(u) + \sin(v) \cdot \mathbf{b}(u)).$$

- (a) Prove that for sufficiently small r > 0,  $\mathbf{x}(u, v)$  is regular.
- (b) Show that, for sufficiently small r > 0, the area of the surface  $S_r$  is given by  $\operatorname{area}(S_r) = 2\pi r L(\alpha)$ , where  $L(\alpha)$  is the length of  $\alpha$ .
- (c) Assume that  $\alpha$  is a simple closed curve and r > 0 small enough so that  $\mathbf{x}(u, v)$  is regular. Let  $K : S_r \to \mathbb{R}$  be the Gauss curvature of  $S_r$ . Explain why we then have

$$\int_{S_r} K dA = 0.$$

- **Q8** Let  $S \subset \mathbb{R}^3$  be the surface of revolution obtained by rotating a simple smooth regular curve  $\alpha(u) = (f(u), 0, g(u))$  with f > 0 about the z-axis of  $\mathbb{R}^3$ . Let  $c : (a, b) \to S$  be a unit speed geodesic, r(s) > 0 be the distance from the point  $c(s) = (c_1(s), c_2(s), c_3(s))$  to the z-axis, and  $\theta(s)$  be the angle at c(s) between the circle  $S \cap \{z = c_3(s)\}$  and the unit vector c'(s).
  - (a) Let  $e_3 = (0, 0, 1)$  and  $s \in (a, b)$  be fixed. Writing  $c(s) = (r(s) \cos \beta, r(s) \sin \beta, z)$  for suitable  $\beta = \beta(s)$ , and parametrising the parallel through c(s) by

$$\gamma(t) = (r(s)\cos(\beta + t), r(s)\sin(\beta + t), z),$$

show that  $\gamma'(0) = -c(s) \times e_3$ . Conclude from this that

$$-(c(s) \times e_3) \cdot c'(s) = r(s) \cos \theta(s).$$

- (b) Let  $\mathbf{x}$  be the standard surface parametrisation associated to the curve  $\alpha$ . Calculate  $\mathbf{x}_u \times \mathbf{x}_v$  and show that any vector perpendicular to  $T_{\mathbf{p}}S$  must lie in the plane spanned by  $\mathbf{p} \in S$  and  $e_3$ .
- (c) Show by differentiation that there is a constant  $C \in \mathbb{R}$  such that

$$(c(s) \times c'(s)) \cdot e_3 = C$$

for all  $s \in (a, b)$ . You may use (b) and the fact that c is a geodesic.

(d) Use the above to prove or disprove that  $r(s) \cos \theta(s) = C$  for all  $s \in (a, b)$ .