

EXAMINATION PAPER

Examination Session:	Year:		Exam Code:	
May/June	2023	3	MATH3041	-WE01
Title: Galois Theory III				
Time:	3 hours			
Additional Material prov	ided:			
Materials Permitted:				
Calculators Permitted:	No	No Models Permitted: Use of electronic calculators is forbidden.		
Instructions to Candidat	Section A is each section	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.		
			Revision:	

SECTION A

- Q1 (a) Determine the minimal polynomial of $\sqrt{3-2\sqrt{2}}$ over \mathbb{Q}
 - (b) Find all complex roots of the polynomial $x^4 + 6x^2 \sqrt{10}x + 3/2$.
- **Q2** (a) Determine the Galois group of the polynomial $f(x) = x^3 x + 1$ over \mathbb{Q} .
 - (b) Determine the Galois group of the polynomial $f(x) = x^3 x + 1$ over $\mathbb{Q}(\sqrt{-23})$.
- **Q3** (a) Suppose that a non-zero polynomial $f(x) \in \mathbb{F}_p[x]$ has a repeated root in some field extension of \mathbb{F}_p . Prove that f(x) is reducible in $\mathbb{F}_p[x]$.
 - (b) Let α be a root of $g(x) = x^4 + x^3 + 1 \in \mathbb{F}_2[x]$ in some field extension. Determine the degree of the extension $\mathbb{F}_2(\alpha)/\mathbb{F}_2$ and find the minimal polynomial of α^{-1} .
- **Q4** (a) Find a normal closure N of the extension $\mathbb{Q}(\sqrt[4]{7})/\mathbb{Q}$.
 - (b) Describe the structure of the Galois group of N/\mathbb{Q} from the previous part by specifying generators and relations.

SECTION B

Q5 Let $L = \mathbb{R}(x_1, x_2, x_3)$ be the field of rational expressions in independent indeterminates x_1, x_2, x_3 with real coefficients, and set

$$e_1 = x_1 + x_2 + x_3$$
, $e_2 = x_1x_2 + x_1x_3 + x_2x_3$, $e_3 = x_1x_2x_3$.

- (a) Find an expression for $x_1^2x_2^2 + x_1^2x_3^2 + x_2^2x_3^2$ as a polynomial in e_1, e_2, e_3 .
- (b) Show that L is a Galois extension of $K = \mathbb{R}(e_1, e_2, e_3)$ and determine the structure of Gal(L/K).
- (c) Let $\alpha = x_1 + 2x_2 + 3x_3 \in L$. By considering the action of the Galois group or otherwise, show that $L = K(\alpha)$.
- **Q6** (a) Find the minimal polynomial of $\theta = \sqrt{5 \sqrt{5}}$ over \mathbb{Q} and show that $K = \mathbb{Q}(\theta)$ is a Galois extension of \mathbb{Q} .
 - (b) Determine the structure of $\operatorname{Gal}(K/\mathbb{Q})$ and describe how its elements act on θ .
 - (c) Find all fields M where $\mathbb{Q} \subset M \subset K$.
- **Q7** Let $L = \mathbb{Q}(\zeta_{25})$ where ζ_{25} is a primitive 25^{th} root of unity.
 - (a) Show that L contains unique subfields M and K such that [L:M]=5 and [L:K]=4.
 - (b) Explain why L/M is a cyclic extension and find $\alpha \in M$ such that $L = M(\sqrt[5]{\alpha})$.
 - (c) Explain why L/K is a cyclic extension and show that there is no $\beta \in K$ such that $L = K(\sqrt[4]{\beta})$.
- Q8 (a) Show that the polynomial $f(x) = x^3 + 2x + 1$ is irreducible in $\mathbb{F}_3[x]$. Given a root θ of f(x) in a splitting field, express the other two roots of f(x) as linear combinations of the basis $1, \theta, \theta^2$ over \mathbb{F}_3 .
 - (b) By using $f(x) = x^3 + 2x + 1$ or otherwise, construct an irreducible polynomial in $\mathbb{F}_3[x]$ which has degree 39.
 - (c) Given prime p and integer $n \geq 1$, prove that $x^{p^n} x \in \mathbb{F}_p[x]$ is the product of all irreducible monic polynomials in $\mathbb{F}_p[x]$ with degree dividing n.