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SECTION A

Q1 Consider the flow u = sin(t)xex + sin(t)yey + cos(t)zez .

(a) Find the particle paths.

(b) Is this flow compressible or incompressible?

(c) Consider a material volume (Dt ) in this flow bounded at t = 0 by a cylinder
of radius R and height h centred at the origin such that

D0 = f(x , y , z) : �h=2 � z � h=2, x2 + y2 � R2g.

Find an expression for how the volume of Dt changes over time.

Q2 (a) Write down the equations that describe an ideal, steady, inviscid flow with
a body force of the form f = �rU and show that Bernoulli’s function is
constant along streamlines in such a flow.

(b) Consider the steady laminar flow from a hose at an angle � to the vertical as
shown.

z = 0

z = h

θ

v2

v1

The flow leaves the hose at speed v1 and is travelling horizontally at speed
v2 when the flow reaches its highest point. The only force acting on the flow
is gravity so that f = �gez . Assuming that pressure is constant within the
flow use Bernoulli’s function to find h in terms of g, v1 and �.
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Q3 We want to non-dimensionalise the governing equations for the given oscillatory
flow over a cylinder of radius a (see the figure). The flow far from the cylinder is
given as U1 cos(!t), where ! is the frequency of far field oscillations.

(a) Write down the viscous incompressible 2D Navier Stokes equations (without
body force)and then non-dimensionalise them using the following scaling

u0 =
1

U1

u, x0 =
1
a

x, t 0 = !t , p0 =
1

�!aU1

p.

Express the dimensionless equations in terms of

Re =
U1a
�

and � =
U1=a
!

.

If �� 1 and Re = O(�), which terms balance each other at leading order?

(b) Repeat part (a), but change the pressure scaling to

p0 =
a

�U1

p.

Remember that � = �=�. If � � 1 and Re = O(�2) what are the equations
that we retrieve at leading order?
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Q4 Consider a converging channel flow with the half-angle � as shown in the figure.

We assume that the flow is 2D (uz = 0 and @=@z = 0), and satisfies the incom-
pressible, steady state Navier Stokes equations in polar coordinates. For the
velocity, we assume the following form

u = ur er + u�e�, ur =
�

r n F (�), u� = 0, (1)

where � is the kinematic viscosity.

(a) Find the power n using the conservation of mass in polar coordinates:

1
r
@

@r
(rur ) +

1
r
@u�

@�
= 0.

(b) The Navier Stokes equations with the assumptions (1) simplify to

ur
@ur

@r
=� 1

�

@p
@r

+ �
 

1
r
@

@r

 
r
@ur

@r

!
� ur

r 2 +
1
r 2

@2ur

@�2

!
,

0 =� 1
�r
@p
@�

+ �
2
r 2

@ur

@�
.

Using this set of equations, find an ODE for F (�). (Hint: you need to eliminate
the pressure terms in the two equations above; you can find @p=@� from the
second equation and then take @=@� of the first equation and replace for
@p=@�.)

(c) Considering the symmetry of the flow and zero velocity at the walls, derive
three boundary conditions for F (�) which are required to solve the ODE you
derived in (b). (You do not need to solve this ODE.)
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SECTION B

Q5 The effect of the surface tension can be included in water waves by modifying the
pressure boundary condition. The governing equations describing water waves
in domain Dt = f(x , z) : �1 < x <1,�h < z < �(x , t)g then become

∆� = 0 in �h < z < �,
@�

@t
+

1
2
jr�j2 + g� � �@

2�

@x2 = 0 on z = �,

@�

@t
+r� �r� =

@�

@z
on z = �,

@�

@z
= 0 on z = �h.

where � is a constant.

(a) Linearise these equations to give the modified equations for linear water
waves.

(b) Find the dispersion relation for travelling waves.

(c) Show that in the long wavelength limit the phase speed is unaffected by
surface tension.

(d) Show that in the short wavelength limit the group velocity is larger than the
phase velocity.

(e) Consider a gaussian wave packet travelling in the short wavelength limit.
Describe qualitatively how the waves inside the envelope evolve as it propa-
gates.

Q6 Consider the kinetic helicity
H =

Z
D
! � u dV ,

of a flow u within a fixed, closed volume D where ! � n = 0 on @D.

(a) Show that H is unchanged by the addition of a potential flow, i.e. when
u ! u +r�.

(b) With reference to what H measures, explain why this is the case.

(c) If
u(x , y , z) = exp(�(x � x0)2 � y2)ez + exp(�(x + x0)2 � z2)ey ,

in an infinite domain, calculate H. You may use that
R
1

�1
e�u2 du =

p
�.

(d) Sketch the flow streamlines and vortex lines for this flow and use this to
explain why H is finite despite the flow itself extending to infinity.
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Q7 In this question, we investigate the stability of the edge wave shown in the figure.

The basic velocity vector does not have a vertical component (in the y direction)
and its horizontal component (in the x direction) is given as

U(x , y ) =

8<
:U1 = U0 �m1y y > 0

U2 = U0 + m2y y < 0,

where U0, m1 and m2 are constants. To make the stability analysis easier we
linearise the vorticity equation (instead of velocity). For instance, if we denoted
the variables associated with the top layer with the subscript 1, we derive the
linearised vorticity equation as

@�01
@t

+ U1
@�01
@x

= 0,

where �01 = @v 01=@x � @u01=@y is the vorticity (perpendicular to the plane) of per-
turbation fields with u01 being the velocity perturbation in the x direction and v 01
the velocity perturbation in the y direction. We also use the streamfunction of
perturbation velocity such that u01 = �@ 01=@y and v 01 = @ 01=@x , and assume the
following ansatz for  01 and pressure

 01 =  ̃1(y )ei(kx�!t), p01 = p̃1(y )ei(kx�!t).

We consider similar ansatz and equations for the variables associated with the
bottom layer, i.e. for u02, v 02, �02,  02 and p02.

(a) Rewrite the linearised vorticity equation in terms of  ̃1 (and  ̃2), and the
basic velocities U1 (and U2). From these equations find  ̃1 and  ̃2. You can
assume  ̃1 ! 0 as y !1 and  ̃2 ! 0 as y ! �1.

(b) Show that the continuity of pressure at the edge y = 0 leads to
�

U1 � !

k

� d ̃1

dy
�  ̃1

dU1

dy
=
�

U2 � !

k

� d ̃2

dy
�  ̃2

dU2

dy
, at y = 0.

(Hint: you can use the linearised horizontal momentum equation).

(c) Argue that the continuity of velocity at the edge results in  ̃1(0) =  ̃2(0).

(d) Using the previous steps, find the dispersion relation for this flow. Based on
the dispersion relation argue whether the flow is stable or unstable. Does
the stability of this flow depend on m1 and m2?
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Q8 We consider 2D planar waves in a tube shown in the figure ((x , y ) 2 R� [0, a]). At
the bottom boundary of this tube, which is a solid material, the vertical velocity is
zero. The top boundary is a spongy material that forces the pressure to be zero
but allows the flow to have non-zero velocity (this type of boundary damps the
sound wave and acts as sound insulation). We start with the wave equation

@2�

@t2 = c2
0

 
@2�

@x2 +
@2�

@y2

!
,

written for the acoustic velocity potential � that satisfies

u = (u, v ) = r�, p = ��0
@�

@t
.

We look for a solution propagating in the x direction of the form �(x , y , t) =
Y (y ) exp(ikxx � i!t).

(a) Considering the boundary conditions, discuss whether or not the following
examples are valid profiles for Y (y )? Explain your reasons for each profile.

(i) (ii) (iii)

(b) Using the wave equation and the correct form of the boundary conditions,
find the general solution for this problem.

(c) With a = �, find �(x , y , t) for the wave in this tube that has the initial profile of
�(x , y , 0) = cos3(y=2) cos(x). (You can use the identity cos(3x) = 4 cos3(x)�
3 cos(x))
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