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SECTION A

Q1 Single-species population models

1.1 Consider the following models for the growth of a single population, x(t), over
time, t. For each model, find any equilibria and determine their stability.
Further, state one good and one bad feature of each model in terms of its
biological interpretation, and say how you might change each model to address
the bad feature you have mentioned.

(i)
dx

dt
= x,

(ii)
dx

dt
= −(x− a)(x− b), where a and b are positive constants with a < b.

1.2 Consider the following bifurcation diagram, which shows how the equilibria x0

of a single-species population model depend on a single parameter, k:

0 1
0

1

k

x0

(i) Write down all the equilibria, x0, shown on the graph.

(ii) Hence write down a model for a population x(t) in the form

dx

dt
= f(x, k)

which would produce this bifurcation diagram.
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Q2 Two-species interaction The growth of two interacting species, x(t) and y(t),
over time, t, is modelled by the system

dx

dt
= x(4− x2 − y),

dy

dt
= y(−1 + x).

2.1 Find the permissible equilibria of the system and classify them.

2.2 Draw the phase plane of y against x for the region x, y ≥ 0, including sample
trajectories, clearly marking nullclines and equilibria.

Q3 What could have made all these cobwebs...? Let un and vn be populations
of flies and spiders at some discrete time. We model their interaction within one
generation by

un = αun−1 − un−1vn−1,

vn = un−1vn−1 − βvn−1,

where α, and β are positive parameters.

3.1 Find all equilibria, and determine any conditions on the parameters for each
equilibrium to be permissible (besides α > 0 and β > 0).

3.2 Determine conditions for each equilibrium to be stable.

3.3 Briefly say how this stability analysis compares to the standard Lotka–Volterra
system seen in lectures,

du

dt
= au− uv,

dv

dt
= uv − bv,

where (u0, v0) = (0, 0) is always permissible and unstable, and (u0, v0) =
(1/b, 1/a) is always permissible but is a centre (so not asymptotically stable).
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Q4 Don’t be a square (PDE stability) For this question, consider the rectangular
domain Ω = [0, Lx]× [0, Ly].

4.1 Consider a single population u in Ω evolving according to

∂u

∂t
= D∇2u+ ru

(
1− u

K

)
, (1)

where D, r and K are positive constants, and where u = 0 on the boundary
of Ω (homogeneous Dirichlet conditions). What do the terms in this model
represent, and what is the biological interpretation of the boundary conditions?

4.2 Find the homogeneous equilibria of (1), remembering to check the boundary
conditions.

4.3 State the eigenvalues ρ of the problem

∇2w =
∂2w

∂x2
+
∂2w

∂y2
= −ρw,

with w = 0 on the boundary of Ω (homogeneous Dirichlet conditions). That
is, write down all values of ρ (you do not need to compute these).

4.4 For each homogeneous equilibrium of (1) found in question 4.2, compute a
condition on the parameters which determines its linear stability.
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SECTION B

Q5 Fourier ‘tr-ants-forms’ A population of ants live along a kitchen worktop in a
student house. While one student attempts to remove them with ant killer, another
decides to model the ant population size with a partial differential equation. Mod-
elling the worktop as an infinitely-long line, the student’s model for the population
over space and time, u(x, t), is

∂u

∂t
= D

∂2u

∂x2
− αu, u(x, 0) =


0 if x < 0
A if 0 ≤ x ≤ L
0 if x > L

, u(±∞, t) = 0,

where D, α, A and L are positive constants and x ∈ R.

5.1 Interpret the terms in this equation, including the boundary and initial condi-
tions, in the context of the ants and their environment. By considering your
interpretation (i.e. not by solving the system), what long-term behaviour do
you expect from this model?

5.2 By writing
u = Uû, x = Xx̂, t = T t̂,

where variables with hats are dimensionless, show that the model can be writ-
ten in dimensionless form as, once hats are removed,

∂u

∂t
=
∂2u

∂x2
− βu, u(x, 0) =


0 if x < 0
1 if 0 ≤ x ≤ 1
0 if x > 1

, u(±∞, t) = 0, (2)

for some β ≥ 0. You should specify the values of U , X and T you chose, as
well as the value of β, in terms of the original problem’s parameters.

5.3 Using Fourier transforms, solve the fundamental problem for (2) and then solve
the full problem. You may find the following useful:

F(k)[f(x)] =
1√
2π

∫ ∞
−∞

e−ikxf(x) dx,

F−1(x)[g(k)] =
1√
2π

∫ ∞
−∞

eikxg(k) dk,∫ ∞
−∞

e−ax
2+bx+c dx =

√
π

a
eceb

2/(4a),

erf(z) =
2√
π

∫ z

0

e−t
2

dt.

Confirm that your prediction for the long-term behaviour of the model (t→∞)
in question 5.1 was correct.

5.4 Very briefly explain why this approach would not work if the partial differential
equation in (2) were

∂u

∂t
=
∂2u

∂x2
− βu2,

with the same boundary and initial conditions.
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Q6 Travelling waves in coral reefs Consider a model for the growth of coral in one
spatial dimension,

∂u

∂t
=
∂2u

∂x2
+ f(u), (3)

where u(x, t) is the density of coral at position x and time t, and f(u) is given by
the diagram below:

0 K
0

u

f(u)

6.1 By looking at the diagram, state the stability of the equilibria of the homoge-
neous form of (3).

6.2 How is (3) similar to the Fisher–Kolmogorov equation? How is it different?

6.3 We are now going to look for a travelling wave solution, u(z), where z = x− ct
and c > 0 is the wavespeed. Given your answer to question 6.1, propose
boundary conditions for u(z) at z = ±∞.

6.4 Now write (3) for u(z). Perform a linear stability analysis on the homogeneous
equilibria to find that the speed of the wave, given that waves travel at their
lowest possible speed, is

c = α
√
f ′(β),

where you should state the value of α and β.

6.5 Briefly say what properties of f you used to show that travelling waves exist.
That is, what did the graph of f(u) have to look like to find travelling waves?

ED01/2023
University of Durham Copyright

CONTINUED



7 of 8
Page number

MATH3171-WE01
Exam code

Q7 Massive chemotaxis Consider a version of the Keller–Segel model of cell chemo-
taxis given by:

∂u

∂t
= Du∇2u−∇ · (χ(u, v)∇v), (4)

∂v

∂t
= Dv∇2v + uf(v)− g(v), (5)

where u(t,x) is the population of cells, v(t,x) the chemoattractant, Du, Dv are
strictly positive parameters, and χ, f, and g are strictly positive functions. Consider
this model posed on a generic fixed bounded spatial domain Ω. Assume that both u
and v satisfy Neumann boundary conditions on the boundary. That is, for x ∈ ∂Ω,
we have n ·∇u = n ·∇v = 0, where n is the unit normal vector.

7.1 Give a biological interpretation to all of the parameters and functions in this
model.

7.2 Show that the boundary conditions and the form of equation (4) together imply
that the total mass of the cells, given by

M(t) =

∫
Ω

u(t,x) dx,

does not change in time. You will need to make use of the divergence theorem,
which states that ∫

Ω

∇ · v dx =

∫
∂Ω

n · v dS,

where v is a vector field, ∂Ω is the domain boundary, n the outward unit
normal, and dS a surface element of the domain.

7.3 Find all homogeneous equilibria of this system (u0, v0). Explain why assum-
ing that g(v)/f(v) is a strictly increasing smooth function of v is enough to
guarantee a unique value of v0 given a value of u0.

7.4 Assume you know the solutions to the spatial eigenvalue problem,

∇2w = −ρw,

where w(x) satisfies Neumann boundary conditions on ∂Ω. Perform a linear
stability analysis of the system (4)-(5) around a spatially homogeneous equi-
librium, (u0, v0), finding a quadratic equation for an instability growth rate λ
as a function of a given spatial eigenvalue ρ. You do not need to solve this
equation for λ.

7.5 Show that, in the absence of any transport terms (Du = Dv = χ = 0), we
must have that g′(v0) > u0f(u0) to prevent instabilities. Describe why λ = 0
is a solution in the spatially homogeneous case, but that it does not indicate a
growing instability.
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Q8 Swift–Hohenberg meets Dirichlet Consider the Swift–Hohenberg equation on
an interval [0, π]:

∂u

∂t
= ru−

(
k2
c +

∂2

∂x2

)2

u− u3, (6)

where r, kc ∈ R are parameters.

8.1 Write down the homogeneous form of the equation. Determine all homogeneous
equilibria of this equation and their stability. Classify any bifurcations that
occur in the homogeneous system.

8.2 Consider the problem

d2w

dx2
= −ρw, w(0) = w(π) = 0.

State the eigenfunctions w(x) and eigenvalues ρ (you do not need to compute
these).

8.3 (i) Which homogeneous boundary conditions for the problem (6) allow the
use of the eigenfunctions w(x) found above to perform a linear stability
analysis?

(ii) Which of the homogeneous equilibria of (6) found in question 8.1 satisfy
these boundary conditions?

(iii) Perform a linear stability analysis of the Swift–Hohenberg equation (6)
around any equilibria satisfying these boundary conditions. Describe pre-
cise conditions that guarantee a pattern-forming instability on this finite
spatial domain.
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