

EXAMINATION PAPER

Examination Session: May/June

2023

Year:

Exam Code:

MATH3201-WE01

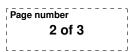
Title:

Geometry III

Time:	3 hours	
Additional Material provided:	Formula sheet	
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions.
	Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks.
	Students must use the mathematics specific answer book.

Revision:

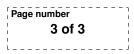


SECTION A

- **Q1** Let r be the reflection on the Euclidean plane with respect to the line x = 0. Let R be the anticlockwise rotation about the origin O = (0, 0) though the angle $\pi/2$.
 - (a) What is the type of the transformation $\psi = R \circ r \circ R^{-1}$?
 - (b) Find the fixed points of the transformation ψ described in part (a).
- Q2 (a) Is it true or false that affine transformations act transitively on quadrilaterals in the Euclidean plane? Justify your answer.
 - (b) A hexagon ABCDEF in the Euclidean plane is symmetric with respect to the diagonal AD. Is it always true that there exists a projective map taking ABCDEF to a regular hexagon? Justify your answer.
- **Q3** Let *ABCDE* be a hyperbolic pentagon with AB = BC = CD = DE = a and $\angle ABC = \angle BCD = \angle CDE = \pi/2$.
 - (a) Let $\gamma = \angle BCA$. Express $\sin \gamma$ in terms of a.
 - (b) Express the length of AE in terms of a.
- **Q4** Let γ be a circle of radius $0 < r < \pi/2$ on the unit sphere S^2 . Let AB be a diameter of γ and let C be a point on γ distinct from A and B.
 - (a) Show that, unlike the Euclidean case, $\angle ACB$ is not necessarily equal to $\pi/2$.
 - (b) Is it true that the size of $\angle ACB$ does not depend on the choice of $C \in \gamma$? Justify your answer.

SECTION B

- **Q5** (a) Does there exist a Möbius transformation taking the points -1, 0, 1 + i, 2 + i to the points 5, 4 + 3i, -3 + 4i, -4 3i respectively? Justify your answer.
 - (b) Let γ_1 and γ_2 be two circles with centres O_1 and O_2 respectively on the Euclidean plane. Let f be a Möbius transformation taking γ_1 to γ_2 . Is it always true that $f(O_1) = O_2$? Justify your answer.
 - (c) Consider the four circles of radius 1 centred at the points 1+i, -1+i, -1-i, 1-i. How many different Möbius transformations take the union of the four circles to itself (not necessarily pointwise)? Justify your answer.
- Q6 (a) Show that there exists a regular hyperbolic quadrilateral with all angles equal to $\pi/3$.
 - (b) Let ABCD be a regular hyperbolic quadrilateral with all angles equal to $\pi/3$ labelled in the clockwise direction. For every $X \in \mathbb{H}^2$ denote by $R_{\pi/3,X}$ a rotation about X through the angle $\pi/3$ (in anti-clockwise direction). Denote $f = R_{\pi/3,D} \circ R_{\pi/3,C} \circ R_{\pi/3,B} \circ R_{\pi/3,A}$. Find the type of the isometry f.
 - (c) Let M be the midpoint of AD. Find $(R_{\pi/3,B} \circ R_{\pi/3,A})^{2023}(M)$.



- Q7 (a) Let $A_1A_2A_3A_4$ be a quadrilateral on the Euclidean plane. Let B_i , i = 1, ..., 4, be a midpoint of A_iA_{i+1} (where $A_5 = A_1$). Show that $B_1B_2 = B_3B_4$ and $B_2B_3 = B_1B_4$.
 - (b) Show that the statement of (a) does not hold for a spherical quadrilateral $A_1A_2A_3A_4$.
 - (c) Consider the spherical quadrilateral $A_1A_2A_3A_4$ and the corresponding quadrilateral $B_1B_2B_3B_4$ constructed as in part (a). Let $S_{B_1B_2B_3B_4}$ and $S_{A_1A_2A_3A_4}$ be the areas of the two quadrilaterals. Is it true that $S_{B_1B_2B_3B_4} = \frac{1}{2}S_{A_1A_2A_3A_4}$? Justify your answer.
- **Q8** (a) Find the cross-ratio of the following four points in $\mathbb{R}P^2$ (given in homogeneous coordinates):

 $A = (1:0:0), \quad B = (1:1:1), \quad C = (0:1:1), \quad D = (-2:1:1).$

- (b) Let $\triangle A_1 A_2 A_3$ be a triangle and T be a point on the Euclidean plane. Assume that $T \notin A_i A_j$ for $i, j \in \{1, 2, 3\}$, $i \neq j$. Let $B_i = A_i T \cap A_j A_k$ for i = 1, 2, 3 and $i, j, k \in \{1, 2, 3\}$ distinct indices. Let $C_i = A_j A_k \cap B_j B_k$ for i = 1, 2, 3 and $i, j, k \in \{1, 2, 3\}$ distinct indices. Assuming that all the points listed above are distinct and exist, prove that the points C_1, C_2, C_3 are collinear.
- (c) Formulate the statement dual to the one given in part (b).