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SECTION A

Q1 Given the single qubit Hilbert space, consider the two unitary time evolutions

Û1 = σ1σ2σ3 ,

Û2 = σ3σ2σ1 ,

where the Pauli matrices σj are given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

(a) How does the pure qubit state |ψ〉 = a|0〉 + b|1〉 transform under the time
evolution Û1?

(b) Similarly, how does the same state |ψ〉 transform under the time evolution Û2?

Q2 Discuss which of the following 2× 2 matrices can describe a possible qubit density
matrix, and whether the corresponding qubit state is pure or mixed. Justify your
answer.

ρ1 =

(
1 2
3 0

)
, ρ2 =

1

4

(
3 2
2 1

)
, ρ3 =

1

4

(
3 1
1 1

)
.

Q3 Show that the gate set {NOR,CNOT} (where NOR(x, y) := NOT(xOR y)) is a uni-
versal gate set for classical computation. You can assume that {NOT,AND,OR,CNOT}
is a universal gate set. Explain why {NOR,CNOT} cannot be a universal gate set
for quantum computation.

Q4 4.1 Show that the following circuit, written in terms of CNOT, controlled-U and
controlled-U † gates is equivalent to a CC-U2 gate (controlled-controlled-U2,
note that it is U2 and not U here), with q1 and q2 the control qubits and q0
the target, for any unitary U :

4.2 Write the matrix representation of the action of this circuit in the computa-
tional basis.

4.3 Find a unitary U such that the CC-U2 circuit above reduces to the quantum
Toffoli (CCNOT) gate.
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SECTION B

Q5 Consider the 2-qubit operator

Û =
1

2

(
Î ⊗ Î +

3∑
j=1

σj ⊗ σj

)
,

where Î denotes the single qubit identity operator and the Pauli matrices σj are
given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

5.1 Show that Û is unitary and evaluate the action of Û on the computational
basis elements |x〉 ⊗ |y〉, with x, y ∈ {0, 1}.

5.2 Consider now the 3-qubit state

|0〉 ⊗ |β00〉 = |0〉 ⊗ 1√
2

(
|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉

)
,

in the bipartite system where Alice has access only to the first two qubits,
while Bob can only act on the third qubit. What are the possible outcomes,
with their respective probabilities and final states, if firstly Alice evolves her
two qubits with the unitary operator Û defined above, and then she measures
σ1 on her first qubit and σ3 on her second qubit?

Q6 Consider the ensemble {(p0, |0〉), (p1, |1〉), (p+, |+〉)}, i.e. the mixture of |0〉 with
probability 0 ≤ p0 ≤ 1, |1〉 with probability 0 ≤ p1 ≤ 1, and |+〉 with probability
0 ≤ p+ ≤ 1, subject to p0 + p1 + p+ = 1.

[Remember |+〉 = |0〉+|1〉√
2

.]

6.1 Write the corresponding density operator, ρ̂, and its 2×2 matrix representation,
ρ, using the mapping of the computational basis ket vectors to the standard

basis vectors |0〉 7→
(

1
0

)
and |1〉 7→

(
0
1

)
.

6.2 For which values of p0, p1, p+, if any, does ρ̂ describe a pure state?

6.3 Consider again the ensemble {(p0, |0〉), (p1, |1〉), (p+, |+〉)} for which we fixed
now p0 = p1 = p and p+ = 1 − 2p, with 0 ≤ p ≤ 1

2
. What is the expectation

value of the observable σ3 on this state?
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Q7 Consider a two-qubit system. We wish to construct a circuit to realize the operation

U =


1 0 0 0
0 0 0 −1
0 1 0 0
0 0 1 0

 .

7.1 Decompose this operator as
U = U1,2U2,3

where Ui,j are unitary operators which only act non-trivially in the subspace
of the Hilbert space spanned by the computational basis vectors |i〉 and |j〉.
Our conventions are that the columns are labelled (reading from left to right)
0, 1, 2 and 3, and similarly for the rows (reading from top to bottom).

7.2 Write the operators Ui,j above in terms of controlled-unitary operators.

[Hint: you might want to use the Gray code 01→ 11→ 10.]

7.3 Write all the controlled-unitary gates you found above in terms of CNOT gates

and the single qubit Hadamard gate H := 1√
2

(
1 1
1 −1

)
.

[Hint: you might find the equality XHXH =

(
0 −1
1 0

)
useful, where X =(

0 1
1 0

)
.]

7.4 Draw the resulting quantum circuit.

Q8 We want to encode a single logical qubit in four physical qubits so as to protect
against arbitrary single bit flip errors.

8.1 Show that |0̄〉 = |0000〉, |1̄〉 = |1111〉 provides a suitable encoding, by showing
that the single bit flip errors map the code subspace to orthogonal subspaces.

8.2 Find a set of three error syndromes that distinguish the code subspace and the
subspaces arising from single bit flip errors.

8.3 Show that X̄ = X0X1X2X3 acts as the NOT operation on the logical qubit.
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