

EXAMINATION PAPER

Examination Session: May/June Year:

2023

Exam Code:

MATH3471-WE01

Title:

Geometry of Mathematical Physics III

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.	

Revision:

SECTION A

- **Q1** (a) State the definition of a representation of a Lie group. When is a representation called irreducible?
 - (b) For the groups U(1) and SO(3), describe two different examples of irreducible representations each.
 - (c) Let $g \in SO(3)$ act on \mathbb{R}^3 by letting

$$\boldsymbol{v} \to r(g)\boldsymbol{v} = g^2 \boldsymbol{v}$$

for $v \in \mathbb{R}^3$. Does this define a representation? Explain your reasoning.

Q2 Consider the path

$$g(t) = \exp\left(it \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}\right)$$

for $t \in \mathbb{R}$ in SU(2).

- (a) Find the tangent vector at the identity element of SU(2) associated with g(t).
- (b) Find the matrix g(t) by working out the exponential. Check that the result is in SU(2). hint:

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$
$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$

- (c) Show that the set $\{g(t)|t \in \mathbb{R}\}$ describes a subgroup of SU(2). Which group is this subgroup isomorphic to?
- **Q3** Consider a relativistic field theory with two complex scalar fields ϕ^1 and ϕ^2 of electric charge 1 and a complex scalar field S of electric charge -2, coupled to a U(1) gauge field A_{μ} .
 - (a) Write a gauge invariant kinetic Lagrangian density for the above fields. What is the global symmetry of this field theory?
 - (b) Write down the most general gauge invariant scalar potential that respects the global symmetry found in part (a) and that is a polynomial of degree at most three in the fields and their complex conjugates.

Q4 Let A_{μ} be an SO(3) gauge field, $F_{\mu\nu}$ be its field strength, and Y be a real 3-vector that transforms as $Y \mapsto MY$ under an SO(3) gauge transformation with group element $M \in SO(3)$. The Lagrangian density is

Exam code

MATH3471-WE01

$$\mathcal{L} = -\frac{1}{2g^2} \operatorname{tr}(F^{\mu\nu}F_{\mu\nu}) - \frac{1}{2}(D^{\mu}Y)^T (D_{\mu}Y) - (Y^TY)^2 ,$$

where D_{μ} is the gauge covariant derivative defined by $D_{\mu}Y = \partial_{\mu}Y - iA_{\mu}Y$, and the subscript T denotes the matrix transpose.

Write the finite SO(3) gauge transformations of A_{μ} and $F_{\mu\nu}$ in terms of M and M^T (you may use the expression for $F_{\mu\nu}$ in terms of covariant derivatives). Show that the Lagrangian density \mathcal{L} is invariant under such gauge transformations.

SECTION B

- **Q5** The Lorentz group L in three dimensions is the group of matrices such that $\Lambda^T \eta \Lambda = \eta$. Here η is a diagonal matrix with non-zero components $\eta_{00} = -1$, $\eta_{11} = \eta_{22} = 1$.
 - 5.1 Find a basis of the Lie algebra of L and work out the commutators between the basis elements.
 - **5.2** Let s_i for i = 0, 1, 2 be matrices such that

$$\{s_i, s_j\} = 2\eta_{ij} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$

Find matrices s_i that satisfy this relation.

hint: try matrices proportional to the Pauli matrices

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

- **5.3** Let \mathfrak{s} be the Lie algebra with basis vectors $S_{ij} := [s_i, s_j]$, and with $[S_{ij}, S_{kl}] \equiv S_{ij}S_{kl} S_{kl}S_{ij}$ the usual commutator between matrices. Find a Lie algebra homomorphism from \mathfrak{s} to the Lie algebra of L.
- **5.4** Does the Lie algebra representation constructed above arise from a group representation of L? Explain your answer.

Q6 Let

$$(\boldsymbol{x}, \boldsymbol{y}) := \sum_{i=1}^{2n} \sum_{j=1}^{2n} x_i \Omega_{ij} y_j$$

be a bilinear form on \mathbb{C}^{2n} with $\Omega_{ij} \in \mathbb{C}$. Let $G \subset GL(2n, \mathbb{C})$ be the set of matrices M for which $(M\boldsymbol{x}, M\boldsymbol{y}) = (\boldsymbol{x}, \boldsymbol{y})$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{C}^{2n}$.

- **6.1** Show that G is a Lie group using matrix multiplication as the group operation.
- **6.2** Under which condition is a matrix contained in the Lie algebra \mathfrak{g} of G? Verify that matrices obeying this condition form a vector space.

6.3 For the case
$$n = 1$$
 and $\Omega = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ show that $G \cap U(2) = SU(2)$.
6.4 For the case $n = 2$ and $\Omega = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}$ find the dimension of G .

Q7 An abelian gauge field A_{μ} in one time and two space dimensions has Lagrangian density

$$\mathcal{L} = k \ \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho} + A_{\mu} J^{\mu} \ ,$$

where k is a real constant, $\epsilon^{\mu\nu\rho}$ is the totally antisymmetric tensor with three indices, normalized such that $\epsilon^{012} = 1$, and J^{μ} is a conserved current.

- **7.1** Show that the action $S[A_{\mu}] = \int d^3x \mathcal{L}$ changes by a boundary term under a gauge transformation $A_{\mu}(x) \mapsto A_{\mu}(x) + \partial_{\mu}\alpha(x)$. (You can leave the boundary term as an integral over spacetime.)
- **7.2** Find the equations of motion and show that they imply $\partial_{\mu}J^{\mu} = 0$.
- 7.3 Express the equations of motion in terms of the electric field E, with components $E_i = F_{i0}$, and the magnetic field $B = F_{12}$. Find the total charge Q associated to the current J^{μ} for a field configuration with magnetic flux $\Phi = \int d^2x B$ across space.

Q8 It is given that, in a gauge where $A_0 = 0$, the energy of a static field configuration of a gauge field A_{μ} and a scalar ϕ transforming in the adjoint representation of the gauge group is

$$E = \int d^3x \operatorname{tr} \left(E_i E_i + B_i B_i + (D_i \phi) (D_i \phi) \right) \,.$$

In the previous equation the integral is over space \mathbb{R}^3 , i = 1, 2, 3 are spatial indices, $E_i = F_{i0}$, $B_i = \frac{1}{2} \epsilon_{ijk} F_{jk}$, D_i is the gauge covariant derivative, and we do not distinguish between upper and lower spatial indices.

- (a) Write the coefficient in front of $(D_i\phi)(D_i\phi)$ as $1 = \sin^2 \alpha + \cos^2 \alpha$ for a constant angle α and use the Bogomol'nyi trick twice to find a lower bound for the energy.
- (b) Use the Bianchi identity $\epsilon_{ijk}D_iF_{jk} = 0$ and the equation of motion $D_iF_{0i} = 0$, which are obeyed by these field configurations, to write the lower bound for the energy as a boundary term.
- (c) Maximize the lower bound for the energy.