

EXAMINATION PAPER

Examination Session:	Year:		Exam	Code:				
May/June	2023	3		MATH42220-WE01				
Title: Representation Theory V								
Time:	3 hours	3 hours						
Additional Material prov	ided:							
Materials Permitted:								
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.						
Instructions to Candidat	Section A is each section	er all questions. on A is worth 40% and Section B is worth 60%. Within section, all questions carry equal marks. ents must use the mathematics specific answer book.						
				Revision:				

SECTION A

Q1 Let (π, V) be a representation of a finite group G. A vector $\mathbf{v} \in V$ is said to generate the representation if

$$V = \operatorname{span}\{\pi(g)\boldsymbol{v} : g \in G\}.$$

- (a) Show that every irreducible representation (π, V) of G is generated by a non-zero vector $\mathbf{v} \in V$.
- (b) Give an example of a representation of a finite group that is generated by a non-zero vector, but is not irreducible.
- **Q2** Let G be the dihedral group of order twelve, $G = \langle r, s | s^2 = r^6 = e, sr = r^{-1}s \rangle$, and let H denote the subgroup of G generated by s and r^2 : $H = \langle s, r^2 \rangle$.
 - (a) Use the fact that the conjugacy classes of H are $\{e\}$, $\{r^2, r^4\}$, and $\{sr^2, sr^4\}$ to compute $\operatorname{Res}_H^G \chi_{\pi}$ for each irreducible representation π of G (as listed in the character table below).

size:	1	1	2	2	3	3
	e	r^3	r	r^2	s	sr
(Id,\mathbb{C})	1	1	1	1	1	1
(π_{+-},\mathbb{C})	1	1	1	1	-1	-1
(π_{-+},\mathbb{C})	1	-1	-1	1	1	-1
$(\pi_{},\mathbb{C})$	1	-1	-1	1	-1	1
(ρ_1,\mathbb{C}^2)	2	-2	1	-1	0	0
(ρ_2,\mathbb{C}^2)	2	2	-1	-1	0	0

The character table of G.

(b) Define a representation (ρ, \mathbb{C}^2) of H by letting

$$\rho(s) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \rho(r^2) = \begin{pmatrix} \cos(\frac{2\pi}{3}) & -\sin(\frac{2\pi}{3}) \\ \sin(\frac{2\pi}{3}) & \cos(\frac{2\pi}{3}) \end{pmatrix}.$$

Use Frobenius reciprocity to decompose the representation $\operatorname{Ind}_H^G(\rho,\mathbb{C}^2)$ into irreducible representations of G.

- Q3 (a) Give a characterization of the Lie algebra of a linear Lie group in terms of the exponential function.
 - (b) Let $S \in GL_n(\mathbb{R})$ be an invertible matrix and consider the Lie algebra $\mathfrak{o}(S)$ of the generalized orthogonal group $O(S) := \{g \in GL_n(\mathbb{R}); g S^t g = S\}$. Show that

$$\mathfrak{o}(S) = \{ X \in \mathfrak{gl}_n(\mathbb{R}); \ XS + S^t X = 0 \}$$
$$(S^{-1} \exp(X)S = \exp(S^{-1}XS) \text{ might be useful}).$$

Q4 Consider the action of $SL_2(\mathbb{R})$ on the space of smooth functions on column vectors $v \in \mathbb{R}^2$ given by

$$(\pi(g)\varphi)(v) = \varphi({}^t g v).$$

- (a) Show that π defines a group representation.
- (b) Compute the associated derived Lie algebra action $D\pi(Y)$ for $Y=\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \in \mathfrak{sl}_2(\mathbb{R})$.

SECTION B

 $\mathbf{Q5}$ Let G be the group of order 16 with the presentation

$$G = \langle a, b | a^2 = b^8 = e, aba = b^5 \rangle.$$

Denote by H the subgroup of G generated by b, i.e. $H = \{e, b, b^2, \dots, b^7\}$. Let $\zeta = e^{2\pi i/8}$, and for each $j = 0, 1, 2, \dots, 7$, let (η_j, \mathbb{C}) be the irreducible representation of H defined by $\eta_i(b^n) = \zeta^{nj}$.

Choosing coset representatives e and a for G/H, let W be the vector space $W = a\mathbb{C} \oplus e\mathbb{C}$ on which G acts by $\operatorname{Ind}_H^G \eta_i$.

- (a) Compute the matrices of $\operatorname{Ind}_H^G \eta_j(a)$ and $\operatorname{Ind}_H^G \eta_j(b)$ with respect to the basis $\{a1, e1\}$ of W.
- (b) Show that

$$\chi_{\operatorname{Ind}_H^G \eta_j}(a^m b^n) = \begin{cases} 0 & \text{if } m \not\equiv 0 \pmod{2} \\ \zeta^{nj} (1 + (-1)^{nj}) & \text{otherwise.} \end{cases}$$

- (c) For which values of j is the representation ($\operatorname{Ind}_H^G \eta_j, W$) irreducible?
- **Q6** Let $\mathcal{P}_2(n)$ denote the set of all subsets of $\{1,\ldots,n\}$ of size two. Define an S_n -action on $\mathcal{P}_2(n)$ by $\sigma \cdot \{i,j\} = \{\sigma(i),\sigma(j)\}$. Let $(\lambda,\mathbb{C}(\mathcal{P}_2(n)))$ denote the regular representation of S_n on $\mathbb{C}(\mathcal{P}_2(n))$, i.e.

$$\lambda(\sigma) \left(\sum_{S \in \mathcal{P}_2(n)} z_S S \right) = \sum_{S \in \mathcal{P}_2(n)} z_S \, \sigma \cdot S = \sum_{S \in \mathcal{P}_2(n)} z_{\sigma^{-1} \cdot S} \, S$$

for all $\sigma \in S_n$ and $z_S \in \mathbb{C}$.

(a) Define the linear map $T: \mathbb{C}(\mathcal{P}_2(n)) \to \operatorname{Sym}^2\mathbb{C}^n$ by

$$T\{i,j\} = e_i e_j,$$

where e_m $(1 \leq m \leq n)$ is the m-th standard basis vector of \mathbb{C}^n . Show that T is an isomorphism of S_n -representations between $(\lambda, \mathbb{C}(\mathcal{P}_2(n)))$ and $(\operatorname{Sym}^2\pi, U)$; here (π, \mathbb{C}^n) denotes the permutation representation of S_n on \mathbb{C}^n , and $U \subset \operatorname{Sym}^2\mathbb{C}^n$ is the subspace spanned by $\{e_ie_j : i \neq j\}$.

(b) Let $(\mathrm{Sym}^2\pi, V)$ be a subrepresentation of $(\mathrm{Sym}^2\pi, \mathrm{Sym}^2\mathbb{C}^n)$ such that

$$(\operatorname{Sym}^2 \pi, \operatorname{Sym}^2 \mathbb{C}^n) = (\operatorname{Sym}^2 \pi, U) \oplus (\operatorname{Sym}^2 \pi, V).$$

Show that $(\operatorname{Sym}^2 \pi, V) \cong (\pi, \mathbb{C}^n)$.

(c) Show that

$$2\chi_{\lambda}(\sigma) = (\#\{1 \le i \le n : \sigma(i) = i\} - 1)^2 + (\#\{1 \le i \le n : \sigma^2(i) = i\}) - 1.$$

Q7 (a) Consider $V = T^3(\mathbb{C}^2) = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$, the third tensor power of the standard representation of $GL_2(\mathbb{C})$.

Decompose V into irreducible representations of $SL_2(\mathbb{C})$ and then of $GL_2(\mathbb{C})$. Give a weight basis for all of them. (Note that since one representation occurs with higher multiplicity your choice is not canonical).

- (b) How often does the trivial representation of $SL_2(\mathbb{C})$ occur in $T^8(\mathbb{C}^2) = \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$, the eighth tensor power of the standard representation of $SL_2(\mathbb{C})$?
- **Q8** Let $\mathfrak{h} = \left\{ \begin{pmatrix} 0 & x & z \\ 0 & 0 & y \\ 0 & 0 & 0 \end{pmatrix}; x, y, z \in \mathbb{R} \right\}$ be the "Heisenberg" Lie algebra. You may assume that \mathfrak{h} has a basis $X = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, and $Z = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ satisfying $[X, Y] = Z, \qquad [X, Z] = [Y, Z] = 0.$

Let (π, V) be an irreducible finite-dimensional Lie algebra representation of \mathfrak{h} .

(a) Use Schur's Lemma to show that there exists a scalar $\lambda \in \mathbb{C}$ such that

$$\pi(Z)v = \lambda v \tag{*}$$

for all $v \in V$.

(b) Show by induction that for all positive integers k we have

$$\pi(X)\pi(Y)^k = \pi(Y)^k \pi(X) + k\pi(Y)^{k-1} \pi(Z).$$

- (c) Assume that (*) holds in (1) with $\lambda = 0$. Show that then $\pi(X)$ and $\pi(Y)$ commute. Conclude that π is one-dimensional.
- (d) Now assume $\lambda \neq 0$. Let $v \in V$ be an eigenvector of $\pi(X)$. Use (b) to show that if $v, \pi(Y)v, \ldots, \pi(Y)^n v$ are linearly dependent for some positive n, then $v, \pi(Y)v, \ldots, \pi(Y)^{n-1}v$ are also linearly dependent. Obtain a contradiction. (Hence there are no finite-dimensional irreducible Lie algebra representations of \mathfrak{h} with $\pi(Z) \neq 0$.)