

EXAMINATION PAPER

Examination Session: May/June

Year: 2023

Exam Code:

MATH4241-WE01

Title:

Representation Theory IV

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.

Revision:

SECTION A

Q1 Let (π, V) be a representation of a finite group G. A vector $v \in V$ is said to generate the representation if

$$V = \operatorname{span} \{ \pi(g) \boldsymbol{v} : g \in G \}.$$

- (a) Show that every irreducible representation (π, V) of G is generated by a non-zero vector $\boldsymbol{v} \in V$.
- (b) Give an example of a representation of a finite group that is generated by a non-zero vector, but is not irreducible.
- **Q2** Let G be the dihedral group of order twelve, $G = \langle r, s | s^2 = r^6 = e, sr = r^{-1}s \rangle$, and let H denote the subgroup of G generated by s and r^2 : $H = \langle s, r^2 \rangle$.
 - (a) Use the fact that the conjugacy classes of H are $\{e\}$, $\{r^2, r^4\}$, and $\{sr^2, sr^4\}$ to compute $\operatorname{Res}_{H}^{G}\chi_{\pi}$ for each irreducible representation π of G (as listed in the character table below).

			-	-	~			
size:	1	1	2	2	3	3		
	e	r^3	r	r^2	s	sr		
(Id,\mathbb{C})	1	1	1	1	1	1		
(π_{+-},\mathbb{C})	1	1	1	1	-1	-1		
(π_{-+},\mathbb{C})	1	-1	-1	1	1	-1		
$(\pi_{},\mathbb{C})$	1	-1	-1	1	-1	1		
(ρ_1, \mathbb{C}^2)	2	-2	1	-1	0	0		
(ρ_2, \mathbb{C}^2)	2	2	-1	-1	0	0		

The character table of G.

(b) Define a representation (ρ, \mathbb{C}^2) of H by letting

$$\rho(s) = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}, \quad \rho(r^2) = \begin{pmatrix} \cos(\frac{2\pi}{3}) & -\sin(\frac{2\pi}{3})\\ \sin(\frac{2\pi}{3}) & \cos(\frac{2\pi}{3}) \end{pmatrix}.$$

Use Frobenius reciprocity to decompose the representation $\operatorname{Ind}_{H}^{G}(\rho, \mathbb{C}^{2})$ into irreducible representations of G.

- Q3 (a) Give a characterization of the Lie algebra of a linear Lie group in terms of the exponential function.
 - (b) Let $S \in \operatorname{GL}_n(\mathbb{R})$ be an invertible matrix and consider the Lie algebra $\mathfrak{o}(S)$ of the generalized orthogonal group $O(S) := \{g \in \operatorname{GL}_n(\mathbb{R}); g S^t g = S\}$. Show that

$$\mathfrak{o}(S) = \{ X \in \mathfrak{gl}_n(\mathbb{R}); \ XS + S^t X = 0 \}$$
$$(S^{-1} \exp(X)S = \exp(S^{-1}XS) \text{ might be useful}).$$

Q4 Consider the action of $SL_2(\mathbb{R})$ on the space of smooth functions on column vectors $v \in \mathbb{R}^2$ given by

$$(\pi(g)\varphi)(v) = \varphi\left({}^{t}gv\right).$$

- (a) Show that π defines a group representation.
- (b) Compute the associated derived Lie algebra action $D\pi(Y)$ for $Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \in \mathfrak{sl}_2(\mathbb{R}).$

SECTION B

Q5 Let G be the group of order 16 with the presentation

$$G = \langle a, b | a^2 = b^8 = e, \ aba = b^5 \rangle.$$

Denote by H the subgroup of G generated by b, i.e. $H = \{e, b, b^2, \ldots, b^7\}$. Let $\zeta = e^{2\pi i/8}$, and for each $j = 0, 1, 2, \ldots, 7$, let (η_j, \mathbb{C}) be the irreducible representation of H defined by $\eta_j(b^n) = \zeta^{nj}$.

Choosing coset representatives e and a for G/H, let W be the vector space $W = a\mathbb{C} \oplus e\mathbb{C}$ on which G acts by $\operatorname{Ind}_{H}^{G}\eta_{i}$.

- (a) Compute the matrices of $\operatorname{Ind}_{H}^{G}\eta_{j}(a)$ and $\operatorname{Ind}_{H}^{G}\eta_{j}(b)$ with respect to the basis $\{a1, e1\}$ of W.
- (b) Show that

$$\chi_{\operatorname{Ind}_{H}^{G}\eta_{j}}(a^{m}b^{n}) = \begin{cases} 0 & \text{if } m \not\equiv 0 \pmod{2} \\ \zeta^{nj}(1+(-1)^{nj}) & \text{otherwise.} \end{cases}$$

- (c) For which values of j is the representation ($\operatorname{Ind}_{H}^{G}\eta_{i}, W$) irreducible?
- **Q6** Let $\mathcal{P}_2(n)$ denote the set of all subsets of $\{1, \ldots, n\}$ of size two. Define an S_n action on $\mathcal{P}_2(n)$ by $\sigma \cdot \{i, j\} = \{\sigma(i), \sigma(j)\}$. Let $(\lambda, \mathbb{C}(\mathcal{P}_2(n)))$ denote the regular
 representation of S_n on $\mathbb{C}(\mathcal{P}_2(n))$, i.e.

$$\lambda(\sigma)\left(\sum_{S\in\mathcal{P}_2(n)}z_SS\right) = \sum_{S\in\mathcal{P}_2(n)}z_S\,\sigma\cdot S = \sum_{S\in\mathcal{P}_2(n)}z_{\sigma^{-1}\cdot S}\,S$$

for all $\sigma \in S_n$ and $z_S \in \mathbb{C}$.

(a) Define the linear map $T : \mathbb{C}(\mathcal{P}_2(n)) \to \operatorname{Sym}^2 \mathbb{C}^n$ by

$$T\{i,j\} = e_i e_j,$$

where e_m $(1 \le m \le n)$ is the *m*-th standard basis vector of \mathbb{C}^n . Show that *T* is an isomorphism of S_n -representations between $(\lambda, \mathbb{C}(\mathcal{P}_2(n)))$ and $(\text{Sym}^2\pi, U)$; here (π, \mathbb{C}^n) denotes the permutation representation of S_n on \mathbb{C}^n , and $U \subset$ $\text{Sym}^2\mathbb{C}^n$ is the subspace spanned by $\{e_i e_j : i \ne j\}$.

(b) Let $(\text{Sym}^2 \pi, V)$ be a subrepresentation of $(\text{Sym}^2 \pi, \text{Sym}^2 \mathbb{C}^n)$ such that

$$(\operatorname{Sym}^2 \pi, \operatorname{Sym}^2 \mathbb{C}^n) = (\operatorname{Sym}^2 \pi, U) \oplus (\operatorname{Sym}^2 \pi, V).$$

Show that $(\text{Sym}^2\pi, V) \cong (\pi, \mathbb{C}^n).$

(c) Show that

$$2\chi_{\lambda}(\sigma) = \left(\#\{1 \le i \le n : \sigma(i) = i\} - 1\right)^2 + \left(\#\{1 \le i \le n : \sigma^2(i) = i\}\right) - 1.$$

CONTINUED

Q7 (a) Consider V = T³(ℂ²) = ℂ² ⊗ ℂ² ⊗ ℂ², the third tensor power of the standard representation of GL₂(ℂ).
Decompose V into irreducible representations of SL₂(ℂ) and then of GL₂(ℂ). Give a weight basis for all of them. (Note that since one representation occurs)

with higher multiplicity your choice is not canonical).

- (b) How often does the trivial representation of $SL_2(\mathbb{C})$ occur in $T^8(\mathbb{C}^2) = \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2$, the eighth tensor power of the standard representation of $SL_2(\mathbb{C})$?
- **Q8** Let $\mathfrak{h} = \left\{ \begin{pmatrix} 0 & x & z \\ 0 & 0 & y \\ 0 & 0 & 0 \end{pmatrix}; x, y, z \in \mathbb{R} \right\}$ be the "Heisenberg" Lie algebra. You may assume that \mathfrak{h} has a basis $X = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, and $Z = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ satisfying $[X, Y] = Z, \qquad [X, Z] = [Y, Z] = 0.$

Let (π, V) be an irreducible finite-dimensional Lie algebra representation of \mathfrak{h} .

(a) Use Schur's Lemma to show that there exists a scalar $\lambda \in \mathbb{C}$ such that

$$\pi(Z)v = \lambda v \tag{(*)}$$

for all $v \in V$.

(b) Show by induction that for all positive integers k we have

$$\pi(X)\pi(Y)^{k} = \pi(Y)^{k}\pi(X) + k\pi(Y)^{k-1}\pi(Z).$$

- (c) Assume that (*) holds in (1) with $\lambda = 0$. Show that then $\pi(X)$ and $\pi(Y)$ commute. Conclude that π is one-dimensional.
- (d) Now assume $\lambda \neq 0$. Let $v \in V$ be an eigenvector of $\pi(X)$. Use (b) to show that if $v, \pi(Y)v, \ldots, \pi(Y)^n v$ are linearly dependent for some positive n, then $v, \pi(Y)v, \ldots, \pi(Y)^{n-1}v$ are also linearly dependent. Obtain a contradiction. (Hence there are no finite-dimensional irreducible Lie algebra representations of \mathfrak{h} with $\pi(Z) \neq 0$.)