

EXAMINATION PAPER

Examination Session: May/June

2023

Year:

Exam Code:

MATH4281-WE01

Title:

Topics in Combinatorics IV

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.		

Revision:

SECTION A

- **Q1 1.1** Show that the number of sequences of non-negative numbers a_1, \ldots, a_{2n} with $a_1 = 1, a_{2n} = 0$, and $a_i a_{i+1} = \pm 1$ is equal to the *n*-th Catalan number C_n .
 - **1.2** Denote by $p_k(n)$ the number of Young diagrams $\lambda \vdash n$ with k rows. Show that

$$p_1(n) + p_2(n) + \dots + p_k(n) = p_k(n+k)$$

- **Q2** (a) Let P be the root poset of a root system of type A_3 . Draw the Hasse diagram of P.
 - (b) Draw the Hasse diagram of the poset of order ideals of P. Identify joinirreducible elements.
- Q3 (a) Let $w = 351496287 \in S_9$. Apply the Robinson-Shensted-Knuth (RSK) algorithm to compute the insertion and recording tableaux P and Q.
 - (b) Let (P', Q') be standard Young tableaux of shape $l = (4, 3, 2) \vdash 9$, where

Find $w' \in S_9$ which is taken to the pair (P, Q) by the RSK algorithm.

- **Q4** Let (G, S) be a Coxeter system, and let l(g) denote the length of $g \in G$.
 - (a) Let $g \in G$, $s \in S$. Show that |l(gs) l(g)| = 1.
 - (b) Let $g \in G$, $s, t \in S$. Suppose that l(gs) = l(g) + 1 and l(tg) = l(g) + 1. Show that either l(tgs) = l(g) + 2 or tgs = g.

SECTION B

Q5 Let Δ be a root system. Let (\cdot, \cdot) be the dot product, and let $\langle \alpha \mid \beta \rangle = \frac{2(\alpha, \beta)}{(\beta, \beta)}$ for $\alpha, \beta \in \Delta$.

- (a) Let $\alpha, \beta \in \Delta$ be non-collinear. Show that if $(\alpha, \beta) < 0$ then $\alpha + \beta \in \Delta$, and if $(\alpha, \beta) > 0$ then $\alpha \beta \in \Delta$.
- (b) Show that there exist integers $p, q \ge 0$, such that the set $I = \{k \in \mathbb{Z} \mid \beta + k\alpha \in \Delta\}$ is an interval $[-q, p] \cap \mathbb{Z}$.
- (c) In the setting of part (b), let $R = \{\beta + k\alpha \mid k \in I\}$. Show that $r_{\alpha}(R) = R$. Show that $q - p = \langle \beta \mid \alpha \rangle$.
- Q6 (a) Let P be a finite poset, and let $f : P \to P$ be an order-preserving bijection. Show that f^{-1} is also order-preserving.

- (b) Show that for infinite posets the statement of part (a) may not hold.
- (c) Let P be a poset such that every chain and every antichain is finite. Show that P is finite.

Hint: consider the set of minimal elements of P.

- **Q7** (a) Compute the number of lattice paths with steps $(1, \pm 1)$ between points (0, 1) and (2n, 1) that do not go below the x-axis.
 - (b) A Dyck path is *hill-free* if it has no peaks at height 1 (or, equivalently, does not meet x-axis at two points 2k and 2k + 2 for any k). Denote the number of hill-free Dyck paths of length 2n by F_n , and let F(x) be the (ordinary) generating function of the sequence F_n . Let C(x) be the generating function of Catalan numbers. Show that the generating function of the hill-free Dyck paths whose leftmost peak is at height 2 is $x^2C(x)F(x)$.
 - (c) Show that the generating function of the hill-free Dyck paths whose leftmost peak is at height 3 is $x^3C(x)^2F(x)$. Hint: use the relation $xC(x)^2 - C(x) + 1 = 0$.
 - (d) Use the relation $F(x) = \frac{1}{1 x^2 C(x)^2}$ to show that the number of hill-free Dyck paths of length 2n whose leftmost peak is at height 2 or 3 is the (n-1)-st Catalan number C_{n-1} . Hint: Show that $x^2 C(x) F(x) + x^3 C(x)^2 F(x) = x(C(x) - 1)$.
- **Q8** Let Δ be the root system of type F_4 . Let Δ_l and Δ_s be the sets of long and short roots of Δ respectively.
 - (a) Show that Δ_l and Δ_s are root systems and find their types.
 - (b) Compute the Coxeter number of Δ_l .
 - (c) Find the exponents of the Weyl group of Δ_l .