

EXAMINATION PAPER

Examination Session: May/June Year: 2023

Exam Code:

MATH42920-WE01

Title:

Functional Analysis and Applications V

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.		

Revision:

SECTION A

 $\mathbf{Q1}$ Consider the set

$$c_{\ell} = \left\{ \{a_n\}_{n \in \mathbb{N}} \in \mathbb{C} \mid \lim_{n \to \infty} a_n \text{ exists} \right\}.$$

You may use without proof that c_{ℓ} is a subspace of ℓ_{∞} .

1.1 We define $L: (c_{\ell}, \|\cdot\|_{\infty}) \to \mathbb{C}$ by

$$L\boldsymbol{a} = \lim_{n \to \infty} a_n.$$

Show that L is a linear functional. Moreover, show that L is bounded and

$$\|L\| = 1.$$

- $1.2\,$ Show that there exists a bounded linear functional $\mathcal{L}:\ell_\infty\to\mathbb{C}$ such that
 - $\|\mathcal{L}\| = 1.$
 - For any $a \in c_{\ell}$ we have that $\mathcal{L}a = \lim_{n \to \infty} a_n$.
- **Q2** Consider the space ℓ_p of complex sequences defined in class.
 - **2.1** Let $1 \le p < \infty$ be given. Show that the sequence $\boldsymbol{a} = \{a_n\}_{n \in \mathbb{N}} = \{\frac{1}{n^{\alpha}}\}_{n \in \mathbb{N}}$ is in ℓ_p if and only if $\alpha p > 1$.
 - **2.2** It is known that for any $1 \le s < r < \infty$ we have that $\ell_s \subseteq \ell_r$, which implies that we can equip ℓ_s with two norms: $\|\cdot\|_s$ and $\|\cdot\|_r$. Using the sequence $\{a_n\}_{n\in\mathbb{N}}$ in ℓ_s defined by

$$(\boldsymbol{a}_n)_j = a_{n,j} = \begin{cases} j^{-1/s} & j \le n \\ 0 & j > n \end{cases}$$

show that $\|\cdot\|_s$ and $\|\cdot\|_r$ are not equivalent on ℓ_s .

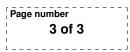
Q3 Let $k \in C([0,1])$ with k(y) > 0 for all $y \in [0,1]$. Let \mathcal{X} be the Banach space $(C([0,1]), \|\cdot\|_{\infty})$. Define the linear operator $T : \mathcal{X} \to \mathcal{X}$ by

$$(Tu)(x) = \int_0^x k(y)u(y) \,\mathrm{d}y, \quad x \in [0,1].$$

- **3.1** Show that T is bounded and that $||T|| = \int_0^1 k(y) \, dy$.
- **3.2** Show that T^{-1} exists on $\mathcal{D}(T^{-1}) = C^1([0,1]) \subseteq \mathcal{X}$.
- **Q4** Let T be a closed linear operator in a Hilbert space \mathcal{H} . Assume that $i \in \rho(T)$. Define $U : \mathcal{H} \to \mathcal{H}$ by $U = (T + i)(T - i)^{-1}$.
 - **4.1** Show that $U = I + 2i(T i)^{-1}$ and $U^* = (T^* i)(T^* + i)^{-1}$.
 - **4.2** Show that if T is selfadjoint then U is unitary (i.e. $UU^* = U^*U = I$).
 - **4.3** Assume that T is a selfadjoint operator with compact resolvent and eigenvalues $\{\lambda_n : n \in \mathbb{N}\}$. Prove that there exists an orthonormal basis $\{e_n : n \in \mathbb{N}\}$ of \mathcal{H} consisting of eigenvectors of U with corresponding eigenvalues $\{\mu_n : n \in \mathbb{N}\}$ such that

$$\forall x \in \mathcal{H}: \quad Ux = \sum_{n \in \mathbb{N}} \mu_n \langle x, e_n \rangle e_n, \quad \mu_n = \frac{\lambda_n + \mathrm{i}}{\lambda_n - \mathrm{i}}.$$

Hint: Apply the Spectral Theorem to T.



SECTION B

- Q5 Let \mathcal{X} and \mathcal{Y} be Banach spaces. We say that a sequence of bounded linear operators $\{T_n\}_{n\in\mathbb{N}}$ from \mathcal{X} to \mathcal{Y} is
 - uniformly operator convergent to T if $||T_n T|| \xrightarrow[n \to \infty]{} 0$.
 - strongly operator convergent to T if $T_n x \xrightarrow[n \to \infty]{} Tx$ for any $x \in \mathcal{X}$.
 - weakly operator convergent to T if $T_n x \xrightarrow[n \to \infty]{w} Tx$.
 - **5.1** Show that if $\{T_n\}_{n\in\mathbb{N}}$ is uniformly operator convergent to T then it is strongly operator convergent to T.
 - **5.2** Show that if $\{T_n\}_{n\in\mathbb{N}}$ is strongly operator convergent to T then it is weakly operator convergent to T.
 - **5.3** Show that if $\{T_n\}_{n \in \mathbb{N}}$ is strongly operator convergent to T then

$$\sup_{n\in\mathbb{N}}\|T_n\|<\infty.$$

Q6 Let \mathcal{X} and \mathcal{Y} be Banach spaces and let $T : \mathcal{D}(T) \subseteq \mathcal{X} \to \mathcal{Y}$ be a closed linear operator. In addition, let $S : \mathcal{D}(S) \subseteq \mathcal{X} \to \mathcal{D}(T)$ be a bounded linear operator such that $\mathcal{D}(S)$ is closed.

6.1 Show that if $\{x_n\}_{n\in\mathbb{N}} \in \mathcal{D}(S)$ is such that $x_n \xrightarrow[n\to\infty]{} x$ then $x \in \mathcal{D}(S)$ and $Sx_n \xrightarrow[n\to\infty]{} Sx.$

- **6.2** Show that the composition $TS : \mathcal{D}(S) \subseteq \mathcal{X} \to \mathcal{Y}$ is a closed operator and conclude that it must be bounded.
- **Q7** In the Hilbert space $\mathcal{H} = \ell_2(\mathbb{Z})$ define the linear operator $T : \mathcal{D}(T) \subseteq \mathcal{H} \to \mathcal{H}$ by

$$(T\boldsymbol{x})_n = \begin{cases} \frac{1}{n}x_{n-1}, & n \ge 1, \\ nx_{n-1}, & n \le -1, \\ x_{-1}, & n = 0, \end{cases} \quad \mathcal{D}(T) = \left\{ \boldsymbol{x} = \{x_n\}_{n \in \mathbb{N}} \subseteq \mathbb{C} : \sum_{n = -\infty}^{-1} |nx_{n-1}|^2 < \infty \right\}.$$

- **7.1** Find the adjoint operator $T^* : \mathcal{D}(T^*) \subseteq \mathcal{H} \to \mathcal{H}$. You are not required to find $\mathcal{D}(T^*)$.
- **7.2** Show that $\sigma_p(T) = \mathbb{C} \setminus \{0\}$ and find $\sigma(T)$.
- **Q8** Consider the sesquilinear form $B: H^1(\mathbb{R}) \times H^1(\mathbb{R}) \to \mathbb{C}$ given by

$$B(\varphi, u) = \int_{\mathbb{R}} \varphi'(x+1) \overline{u'(x)} \, \mathrm{d}x.$$

- **8.1** Find a linear operator $T : \mathcal{D}(T) = H^2(\mathbb{R}) \subseteq L^2(\mathbb{R}) \to L^2(\mathbb{R})$ such that $\langle \varphi, Tu \rangle = B(\varphi, u)$ for all $u \in H^2(\mathbb{R})$ and all $\varphi \in H^1(\mathbb{R})$.
- **8.2** Find a function $u \in H^1(\mathbb{R})$ (other than the constant zero function) with B(u, u) = 0.
- **8.3** Is the sesquilinear form B bounded? Is it coercive? Justify your answers.