

EXAMINATION PAPER

Examination Session: May/June

2023

Year:

Exam Code:

MATH4361-WE01

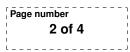
Title:

Ergodic Theory IV

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.

Revision:



Exam code	ר - ו
MATH4361-WE01	1
1	1
L	

SECTION A

- **Q1** (a) When do we call a topological dynamical system (X, T) uniquely ergodic? Give an alternative (and equivalent) characterisation of unique ergodicity.
 - (b) Show that

$$\lim_{n\to\infty} 1/n\cdot \sum_{k=0}^{n-1}\cos(x+k) = 0$$

for all $x \in \mathbb{R}$.

Q2 Let (X, T) be a topological dynamical system with an invariant measure μ on X. Show that $T(\operatorname{supp}(\mu)) = \operatorname{supp}(\mu)$.

NB: Recall that

 $supp(\mu) = \{x \in X : \text{ for all open sets } U \subseteq X \text{ with } x \in U, \text{ we have } \mu(U) > 0\}.$

You may further use without proof that equivalently, $supp(\mu)$ is the unique closed subset of X with $\mu(supp(\mu)) = 1$ and such that if $A \subseteq X$ is closed and $\mu(A) = 1$, then $supp(\mu) \subseteq A$.

Q3 Let

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, P = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/2 & 0 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix},$$

and let Σ_A^+ be the associated subshift of finite type.

- (a) Is A primitive? Justify your answer.
- (b) Evaluate the Markov measure μ_P for P on all cylinders of length 2 for Σ_A^+ .
- (c) Let α be the state partition for Σ_A^+ . Evaluate the information function $I_{\mu_P}(\bigvee_{i=0}^{n-1} \sigma^{-i} \alpha)$.
- (d) Evaluate the measure theoretic entropy $h_{\mu_P}(\sigma)$ of μ_P .

Q4 Let (X, d) be a metric space and $T: X \to X$ a continuous map.

- (a) State the definition of the topological entropy for (X, T).
- (b) State the *Variational Principle* for entropy in the case of a positively expansive map.
- (c) (i) Evaluate the topological entropy of (\mathbb{T}^1, E_3) .
 - (ii) Show that the Lebesgue measure is a measure of maximal entropy for (\mathbb{T}^1, E_3) . Fully justify your answer.

SECTION B

Q5 Let (X,T) be a topological dynamical system and let $x \in X$. We introduce the set

 $F(x) = \{y \in X: \text{ there is a strictly increasing sequence } (n_j) \text{ in } \mathbb{N} \text{ with } \lim_{i \to \infty} T^{n_j} x = y\}.$

NB: In the following, you can take as given that F(x) is always non-empty and compact.

- (a) When do we call a subset $A \subseteq X$ forward invariant? Show that F(x) is forward invariant.
- (b) Show that there is a topological dynamical system (X, T) where there are x and x' in X with F(x) = X and $F(x') = \{x'\}$, respectively.
- (c) Is it always true that TF(x) = F(x)? Justify your answer.
- (d) Define the notion of a minimal dynamical system—you may use any of the several equivalent characterisations from the lectures. Show that (X,T) is minimal if and only if for all $x \in X$, we have F(x) = X.
- **Q6** In the following, we consider $\mathbb{Z}_2 = \{0, 1\}$ equipped with addition mod 2, that is, 0 + 0 = 1 + 1 = 0 and 1 + 0 = 0 + 1 = 1. For $\omega_0, \omega_1 \in \mathbb{T}^1$, we define a map

$$T_{\omega_0,\omega_1} \colon \mathbb{Z}_2 \times \mathbb{T}^1 \to \mathbb{Z}_2 \times \mathbb{T}^1, \qquad (i,x) \mapsto (i+1,x+\omega_i).$$

(a) Given $\omega_0, \omega_1 \in \mathbb{T}^1$, show that there are α_0 and α_1 in \mathbb{T}^1 such that

$$\pi \colon \mathbb{Z}_2 \times \mathbb{T}^1 \to \mathbb{Z}_2 \times \mathbb{T}^1, \qquad (i, x) \mapsto (i, x + \alpha_i)$$

is a conjugacy between $(\mathbb{Z}_2 \times \mathbb{T}^1, T)$ and $(\mathbb{Z}_2 \times \mathbb{T}^1, S)$, where $T = T_{\omega_0,\omega_1}$ and $S = T_{(\omega_0+\omega_1)/2,(\omega_0+\omega_1)/2}$. Conclude that $(\mathbb{Z}_2 \times \mathbb{T}^1, T_{\omega_0,\omega_1})$ and $(\mathbb{Z}_2 \times \mathbb{T}^1, T_{\omega'_0,\omega'_1})$ are conjugate if $\omega_0 + \omega_1 = \omega'_0 + \omega'_1$.

- (b) Show that T_{ω_0,ω_1} is minimal if and only if $\omega_0 + \omega_1$ is irrational.
- (c) Give a Borel probability measure μ on Z₂ × T¹ such that μ is invariant under T_{ω0,ω1} for all ω₀ and ω₁ in T¹. Can μ be ergodic under T_{ω0,ω1} for all ω₀ and ω₁ in T¹? Justify your answer.
 NB: You may use without proof that every Borel set in Z₂ × T¹ is of the form

NB: You may use without proof that every Borel set in $\mathbb{Z}_2 \times \mathbb{T}^1$ is of the form $\{0\} \times A \cup \{1\} \times B$ for some Borel sets A, B in \mathbb{T}^1 .

- **Q7** Let T be a measure preserving transformation of the probability space (X, \mathcal{X}, μ) .
 - (a) State the definition of the measure theoretic entropy $h_{\mu}(T)$.
 - (b) Suppose that T is invertible. Show that $h_{\mu}(T) = h_{\mu}(T^{-1})$.
 - (c) Let α, β, γ be finite partitions. Show that we have $H_{\mu}(\alpha \mid \sigma(\gamma)) \leq H_{\mu}(\alpha \mid \sigma(\beta))$ whenever the partition γ is a refinement of β . *Hint: You may use that*

$$H_{\mu}(\alpha \mid \sigma(\gamma)) = \sum_{A \in \alpha} \int \phi(f_A) d\mu$$

with $\phi(x) = -x \log x$ and $f_A = \mathbb{E}(\mathbb{1}_A \mid \sigma(\gamma)).$

Q8 Let (Σ_A^+, σ) be a subshift of finite type with primitive A.

- (a) State the *Gibbs property* for the Parry measure.
- (b) Show that the topological entropy of (Σ_A^+, σ) is $\log \lambda$ where λ is the maximal eigenvalue of A.

For $p \in (0,1)$ let $\Lambda(p) \subset [0,1] \setminus \mathbb{Q}$ be the points whose base 2 expansion contains digit 0 with frequency p. That is, $x \in \Lambda(p)$ precisely when $x = \sum_{i=1}^{\infty} a_i 2^{-i}$ with $a_i \in \{0,1\}$ and with $\frac{1}{n} \# \{1 \le i \le n : a_i = 0\}$ converging to p. Recall that the *t*-Hausdorff measure of a set $E \subset \mathbb{R}$ is

$$\mathcal{H}^{t}(E) = \lim_{\delta \to 0} \inf \left\{ \sum_{i \in \mathbb{N}} |U_{i}|^{t} : U_{i} \text{ open}, E \subset \bigcup_{i \in \mathbb{N}} U_{i}, |U_{i}| \leq \delta \right\},\$$

where |U| denotes the diameter of a set $U \subset \mathbb{R}$.

(c) Show that $\mathcal{H}^t(\Lambda(p)) = 0$ for any $t > -(p \log p + (1-p) \log(1-p))/\log 2$.