

EXAMINATION PAPER

Examination Session: May/June

2024

Year:

Exam Code:

MATH1561-WE01

Title:

Single Mathematics A

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Credit will be given for your answers to each question. All questions carry the same marks. Students must use the mathematics specific answer book.

Revision:

Q1 1.1 Use the derivative of tanh(x) to find $\frac{d}{dx}(arctanh(x))$.

- **1.2** Express the complex number $\left(\frac{1+\frac{1}{1+i}}{1+\frac{2}{i}}\right)$ in the form a+ib with a and b real. **1.3** Find $\frac{d}{dx} \left((\cos(x))^{\sinh(x)} \right)$.
- Q2 2.1 Evaluate the definite integral

$$\int_0^{\pi/2} \cos^3(x) \sin^2(x) \, dx \; .$$

2.2 Find an expression for the definite integral

$$I_n = \int_0^1 e^x (x-1)^n \, dx$$
 in terms of $I_{n-1}.$ Use this to find $\int_0^1 e^x (x-1)^4 dx.$

2.3 Evaluate the indefinite integral

$$\int \frac{x^4}{x^2 - 1} \, dx$$

- Q3 3.1 Evaluate the following limits, you may use any method. You will only get full marks if you explain all the steps and rules you are using to prove the limits:
 - (a) $\lim_{x \to \infty} \sin(x) e^{-x}$

(b)
$$\lim_{x \to 0^+} \frac{(x-1)^2}{\ln(x) \cos(-x)}$$

- (b) $\lim_{x \to 1} \frac{1}{\ln(x)\cos(\pi x/2)}$ (c) $\lim_{x \to 0} \sin^2(x)\sin(\frac{1}{x}) .$

3.2 Find all complex solutions of the equation

$$(e^z + 2)e^z = -2$$

in the form z = x + iy.

Q4 (a) Determine whether or not the series

$$\sum_{n=1}^{\infty} 4^n e^{-(2n+3)}, \qquad \sum_{n=1}^{\infty} \left(\frac{n+3}{2n+5e^{-n}}\right)^{2n}$$

converge.

(b) Determine the interval of convergence for the power series

$$\sum_{n=1}^{\infty} \frac{1}{n^2 \ln(n+3)} \, (3x)^n \, .$$

Determine whether the series converges at the endpoints of the interval of convergence.

- Q5 5.1 Let $f(x) = \cos(\ln(x+1))$.
 - (a) Find the second-order Taylor polynomial $p_2(x)$ of f(x) about x = 0.
 - (b) Use the Lagrange form of the remainder to obtain bounds on the errors

$$\left| f\left(-\frac{1}{2}\right) - p_2\left(-\frac{1}{2}\right) \right|$$
 and $\left| f\left(\frac{1}{3}\right) - p_2\left(\frac{1}{3}\right) \right|$.

5.2 (a) Consider the matrix

$$A = \begin{pmatrix} \frac{1}{3} & a & 0 \\ b & -\frac{1}{3} & 0 \\ 0 & 0 & c \end{pmatrix}$$

Find all possible combinations of a, b, c such that the matrix A is orthogonal.

- (b) Let B be an orthogonal matrix. Show that B^{-1} is also an orthogonal matrix.
- (c) Assume a matrix M is both orthogonal and symmetric. Show that the only possible eigenvalues of M are ± 1 . You may use any facts given in the Lectures.
- Q6 Consider the following inhomogeneous system of linear equations.

$$x + y + kz = 2$$

$$3x + 4y + 2z = k$$

$$2x + 3y - z = 1$$

- (a) For which values of k ∈ R does the system of linear equations have (i) no solutions, (ii) a unique solution, (iii) infinitely many solutions?
 Find the solutions in cases (ii) and (iii) and, in case (iii), also say whether the solution represents a line or a plane.
- (b) Find the values of $k \in \mathbb{R}$ for which the corresponding homogeneous system of linear equations has infinitely many solutions. Find the solutions for these values of k.

Q7 7.1 Consider the matrix

$$A := \begin{pmatrix} -1 & 0 & 0 \\ -4 & -1 & 1 \\ 4 & 0 & -2 \end{pmatrix}.$$

Find an invertible matrix P such that $P^{-1}AP$ is diagonal. 7.2 Let

$$B := \begin{pmatrix} 2 & 0 & 0 \\ -20 & 2 & 5 \\ 20 & 0 & -3 \end{pmatrix}.$$

Verify that

$$A \cdot B = B \cdot A.$$

Compute the matrix product $P^{-1}BP$ with the matrix P from Question 7.1.

7.3 Show the following general fact: If $C, D \in \operatorname{Mat}_{n,n}(\mathbb{R})$ commute, that is, $C \cdot D = D \cdot C$ and $v \in \mathbb{R}^n$ is a vector in an eigenspace $V_{\lambda}(C)$ of the matrix C, then we have

$$Dv \in V_{\lambda}(C).$$