

EXAMINATION PAPER

Examination Session: May/June

2024

Year:

Exam Code:

MATH2011-WE01

Title:

Complex Analysis II

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.

Revision:

SECTION A

Q1 Let $d : \mathbb{C} \times \mathbb{C} \to \mathbb{R}$ be defined by

$$d(z,w) = \begin{cases} 0, & z = w, \\ 2, & z \neq w. \end{cases}$$

- **1.1** Show that d defines a metric on \mathbb{C} .
- **1.2** Let $z_n = 1/n$ for $n \in \mathbb{N}$. Do we have $\lim_{n\to\infty} z_n = 0$ in the metric space (\mathbb{C}, d) ? Justify your answer.
- **Q2** For $n \in \mathbb{N}$ define the function $f_n : \mathbb{C} \to \mathbb{C}$ by

$$f_n(z) = \begin{cases} 2^{-n}, & \text{Re}(z) \ge 0, \\ 3^{-n}, & \text{Re}(z) < 0. \end{cases}$$

- **2.1** Show that $\sum_{n=1}^{\infty} f_n$ converges uniformly on \mathbb{C} to a function $F : \mathbb{C} \to \mathbb{C}$. **2.2** Is the function F continuous on \mathbb{C} ? Justify your answer.
- **2.2** Is the function T continuous on \mathbb{C} : Justify your answer.
- **Q3** Consider the function $f(z) = \frac{2z-9}{(2z+1)(z-2)}$ and recall that the Taylor series given by $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$ converges for |z| < 1.
 - **3.1** Find real constants A, B such that $f(z) = \frac{A}{2z+1} + \frac{B}{z-2}$.
 - **3.2** Use the Taylor series given above to determine the Taylor series of $\frac{1}{z-2}$ around the point z = 0. What is its radius of convergence?
 - **3.3** Calculate the Laurent series of $\frac{1}{2z+1}$ on the annulus |z| > 1/2.
 - **3.4** Hence, find the Laurent series of f on the annulus 1/2 < |z| < 2.
- Q4 Using the 'substitution' $z = e^{i\theta}$, or otherwise, find a meromorphic function f such that

$$\int_0^{2\pi} \frac{\cos(\theta)}{25 - 24\cos(\theta)} \, d\theta = \int_{|z|=1} f(z) \, dz.$$

Hence, evaluate the integral.

SECTION B

- **Q5** Define $f : \mathbb{C} \setminus \{i\} \to \mathbb{C}$ by $f(z) = \frac{1}{z-i}$.
 - **5.1** Verify that f satisfies the Cauchy–Riemann equations for all $z \in \mathbb{C} \setminus \{i\}$.
 - **5.2** Find the image f(D) of $D = \{z \in \mathbb{C} : |z| < 1, \operatorname{Re}(z) > 0\}.$
- **Q6** Define $f : \mathbb{C} \setminus \{-i\} \to \mathbb{C}$ by $f(z) = \frac{z-i}{z+i}$. For $z_1, z_2 \in \mathbb{C}$, let $L(z_1, z_2)$ denote the straight line segment in \mathbb{C} connecting the point z_1 with the point z_2 .
 - **6.1** Let $D = \{z \in \mathbb{C} : \text{Im}(z) > -1\}$. Find a holomorphic function $F : D \to \mathbb{C}$ such that F'(z) = f(z) for all $z \in D$.
 - **6.2** Consider the line segment $\gamma_1 = L(1, -1)$. Calculate $\int_{\gamma_1} f(z) dz$.
 - 6.3 Consider the following contour consisting of three line segments:

$$\gamma_2 = L(-1, -1 - 2i) \cup L(-1 - 2i, 1 - 2i) \cup L(1 - 2i, 1).$$

Calculate $\int_{\gamma_2} f(z) dz$.

- **Q7** Let $f: D \to \mathbb{C}$ be a non-constant holomorphic function on a non-empty domain $D \subset \mathbb{C}$ that is symmetric about the real axis (that is, $z \in D$ if and only if $\overline{z} \in D$).
 - **7.1** Suppose the Taylor series of f around a point $z_0 \in D$ is given by

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n \qquad (c_n \in \mathbb{C}).$$

Consider the function $g(z) := \overline{f(\overline{z})}$. Calculate the Taylor series of g around the point $\overline{z_0}$ in terms of the coefficients c_n . Hence, or otherwise, demonstrate that g is holomorphic on D.

- **7.2** Explain why the set $D \cap \mathbb{R}$ must be non-empty. Hence, show that $D \cap \mathbb{R}$ contains a non-isolated point.
- **7.3** Prove that if f takes real values on the set $D \cap \mathbb{R}$ then on D it must satisfy

$$\overline{f(z)} = f(\overline{z}) \qquad (z \in D).$$

State any results from lectures that you use.

7.4 For the case $D = \mathbb{C}$, deduce that if f takes real values on \mathbb{R} then it cannot be bounded on the closed lower half-plane $\{z = x + iy \in \mathbb{C} : y \leq 0\}$.

Page number	Exam code
4 of 4	MATH2011-WE01
J	۱ ۱

Q8 Let g be a meromorphic function on \mathbb{C} with finitely many poles $a_1, a_2, \ldots a_n$ and fix a real number ρ such that $\rho > \operatorname{Re}(a_j)$ for every $1 \leq j \leq n$.

For any real R > 0 denote by I_R the straight line segment in \mathbb{C} connecting the point $\rho - iR$ with the point $\rho + iR$ and consider the function $f : \mathbb{R}_{>0} \to \mathbb{C}$ given by

$$f(t) := \frac{1}{2\pi i} \lim_{R \to \infty} \int_{I_R} g(z) e^{zt} dz \qquad (t > 0).$$

You may assume that this function is independent of the choice of ρ .

8.1 Suppose that there exist real constants M > 0, r > 0 and k > 1 such that

$$|g(z)| \le M|z|^{-k}$$
 whenever $|z| \ge r$.

Use the Estimation Lemma to show that for every t > 0 we have

$$\int_{C_R} g(z) e^{zt} dz \longrightarrow 0 \quad \text{as} \quad R \longrightarrow \infty,$$

where C_R is the semi-circular contour $C_R(\theta) = \rho + Re^{i\theta}$, for $\theta \in [\pi/2, 3\pi/2]$, connecting $\rho + iR$ with $\rho - iR$.

8.2 Hence, calculate f(t) in the case that $g(z) = \frac{z+1}{z^3 - z^2}$.