

EXAMINATION PAPER

Examination Session: May/June

2024

Year:

Exam Code:

MATH2031-WE01

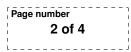
Title:

Analysis in Many Variables II

Time:	3 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.

Revision:



SECTION A

- Q1 Consider the vector field $f(x) = x^2 e_1 + \cos y \sin z e_2 + \sin y \cos z e_3$.
 - (a) By finding a suitable scalar potential, show that f(x) is conservative.
 - (b) Evaluate $\int_C \boldsymbol{f} \cdot d\boldsymbol{x}$ along the curve C with parametrisation $\boldsymbol{x}(t) = (t^2 + 1) \boldsymbol{e}_1 + e^t \boldsymbol{e}_2 + e^{2t} \boldsymbol{e}_3, \text{ for } t \in [0, 1].$
- $\mathbf{Q2}$ Compute the surface area of the surface with parametrisation

 $\boldsymbol{x}(u,v) = u \cos v \, \boldsymbol{e}_1 + u \sin v \, \boldsymbol{e}_2 + u^2 \, \boldsymbol{e}_3 \quad \text{for } u \in [0,\sqrt{2}], \ v \in [0,2\pi).$

- Q3 (a) Let $a \in \mathbb{R}$ -{0}. By integrating against an arbitrary test function show that $(x-a)^2 \delta'(x-a) = 0.$
 - (b) Solve the following equation for the generalised function g,

$$(4x^3 - 8x^2 - 3x + 9)g(x) = 0,$$

i.e. find the generalised solution g(x) in terms of shifted delta distributions δ_a and possibly their derivatives. Justify the steps taken to arrive at the solution.

Q4 You are given the linear operator

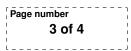
$$L = x^2 e^x \frac{d^2}{dx^2} + g(x)\frac{d}{dx} + h(x),$$

with the two real-valued functions $g \in \mathcal{C}^1([1,2])$ and $h \in \mathcal{C}^0([1,2])$.

- (a) Calculate the formal adjoint L^* of L as a function of g and h.
- (b) Choose g so that L is formally self-adjoint.
- (c) Denoting the formally self-adjoint operator found in part (b) as \mathfrak{L} , consider the Boundary Value Problem on [1, 2] given by

$$\mathfrak{L}u = 0, \qquad u'(1) - u(2) = 0, \ u'(2) = 0.$$

Is this BVP self-adjoint? Justify your answer fully.



SECTION B

Q5 Consider the vector field

$$f(x) = (x^3 + xz + yz^2) e_1 + (xyz^3 + y^7) e_2 + x^2z^5 e_3,$$

and let S be the union of two smooth surfaces S_1 and S_2 , where S_1 is defined by

$$x^2 + y^2 = 9, \quad z \in [0, 8],$$

and S_2 is defined by

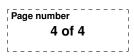
$$x^{2} + y^{2} + (z - 8)^{2} = 9, \quad z \ge 8.$$

- (a) Compute $\nabla \times \boldsymbol{f}$.
- (b) Sketch the surface S, and state whether it is open or closed.
- (c) By using Stokes' Theorem, or otherwise, compute the flux of $\nabla \times \mathbf{f}$ through S, taking the surface normal to be *away from the origin*.

Q6 A closed surface, S, is given by the parametrisation

$$x(u, v) = \cos u e_1 + \cos v e_2 + \cos(u + v) e_3$$
, for $u \in [0, \pi], v \in [-\pi, \pi]$.

- (a) Find a normal vector to S. [This need *not* be a unit vector.]
- (b) Using the Divergence Theorem with the vector field $f(x) = x e_1$, calculate the volume enclosed by S.
- Q7 Let $L = d^2/dx^2$ be the one-dimensional Laplacian.
 - (a) Consider Poisson's equation Lu(x) = f(x) for complex-valued functions $u \in C^2([0, \ell])$ and periodic boundary conditions $u(0) = u(\ell)$. The eigenfunctions for this problem may be expressed in the form $u_n(x) := \exp(ianx), n \in \mathbb{Z}$ for some real number a.
 - (i) Give the value of $a \in \mathbb{R}$ in terms of ℓ and give an expression for the normalised eigenfunctions $\widehat{u_n}(x)$.
 - (ii) Will Poisson's equation have unique solutions? Why or why not?
 - (iii) Assume that the source term f admits an eigenfunction expansion. Under what conditions (if any) on f would a solution exist?
 - (b) If we instead consider the differential equation Lv(x) = g(x) for functions v on $[0, \ell]$ satisfying the boundary condition $v(0) = v(\ell) + 1$, do these functions v form a vector space? Why or why not?
 - (c) In order to transform the problem of part (b) into the original Lu(x) = f(x)problem with $u(0) = u(\ell)$ of part (a), one could write u(x) = v(x) + h(x) and f(x) = g(x) + k(x) for some functions h and k. Find the conditions that h and k must satisfy to achieve this goal. Give a simple example of a function h.



 $\mathbf{Q8}$ (a) Consider the two-dimensional domain

$$D = \mathring{D} \cup \ \partial D := \{ (r, \theta) : 0 \le r \le 1, \ 0 \le \theta \le \pi/2 \},$$

where $\mathring{D} = \{(r,\theta) : 0 < r < 1, 0 < \theta < \pi/2\}$ is the interior of the domain and ∂D its boundary. Denote the origin of the plane by O and label P the point in \mathring{D} with $OP := \mathbf{x}_0 = \frac{1}{2}\mathbf{e}_1 + \frac{1}{2}\mathbf{e}_2$. Use the method of images to construct the Green's function $G(\mathbf{x}, \mathbf{x}_0)$ satisfying

$$\nabla^2 G(\boldsymbol{x}, \boldsymbol{x_0}) = \delta(\boldsymbol{x} - \boldsymbol{x_0}) \qquad \text{for } \boldsymbol{x} \in D,$$

$$G(\boldsymbol{x}, \boldsymbol{x_0}) = 0 \qquad \text{for } \boldsymbol{x} \in \partial D.$$

You may use the fact that the fundamental solution of Laplace's equation, which is regular on $\mathbb{R}^2 - \{x_0\}$, is given by

$$G_0(\boldsymbol{x}, \boldsymbol{x_0}) = rac{1}{2\pi} \ln |\boldsymbol{x} - \boldsymbol{x_0}|$$

Draw a rough sketch indicating the position of the point P and of its images to support your result for the Green's function $G(\boldsymbol{x}, \boldsymbol{x_0})$. Clearly mark the domain D, label your image points as P_i (with $OP_i := \boldsymbol{x_i}$) and call Q the point such that $OQ := \boldsymbol{x}$. Give your answer for the Green's function $G(\boldsymbol{x}, \boldsymbol{x_0})$ in terms of $\boldsymbol{x_0}, \boldsymbol{x}$ and $\boldsymbol{x_i}$.

- (b) Prove that the solution $G(\boldsymbol{x}, \boldsymbol{x_0})$ you obtained in part (a) satisfies $G(\boldsymbol{x}, \boldsymbol{x_0}) = 0$ for all points Q with polar coordinates $(r, \theta) = (r, \pi/2), 0 \le r \le 1$.
- (c) Prove that the solution $G(\boldsymbol{x}, \boldsymbol{x_0})$ you obtained in part (a) satisfies $G(\boldsymbol{x}, \boldsymbol{x_0}) = 0$ for all points Q with polar coordinates $(r, \theta) = (1, \theta), \ 0 \le \theta < \pi/2$.

Hint: you may want to use the formula $d^2 = r^2 + r_0^2 - 2r r_0 \cos(\theta - \theta_0)$ for the distance d between two points of coordinates (r, θ) and (r_0, θ_0) .