

EXAMINATION PAPER

Examination Session: May/June

2024

Year:

Exam Code:

MATH2617-WE01

Title:

Elementary Number Theory II

Time:	2 hours	
Additional Material provided:		
Materials Permitted:		
Calculators Permitted:	No	Models Permitted: Use of electronic calculators is forbidden.

Instructions to Candidates:	Answer all questions. Section A is worth 40% and Section B is worth 60%. Within each section, all questions carry equal marks. Students must use the mathematics specific answer book.	

Revision:

SECTION A

- **Q1** Let ϕ denote the Euler ϕ function.
 - **1.1** Compute $\phi(2500)$.
 - **1.2** Find a solution $0 \le x < 2500$ such that

 $7^{5004} \equiv x \pmod{2500}.$

- **1.3** Show that 884 can be written as a sum of two squares, and find $a, b \in \mathbb{Z}$ such that $884 = a^2 + b^2$.
- **Q2** 2.1 Find the smallest solution $x \in \mathbb{N}$ to the system of congruences

$$x \equiv 13 \pmod{16}$$
$$x \equiv 2 \pmod{11}.$$

2.2 Find the smallest solution $x \in \mathbb{N}$ such that

 $365x \equiv 4 \pmod{337}.$

Show all work involved.

SECTION B

- Q3 3.1 Determine $\operatorname{ord}_{17}(2)$. Justify your answer.
 - **3.2** Show that if $a \in \mathbb{N}$ is such that $2^a + 2$ is divisible by 17 then $a \equiv 5 \pmod{8}$.
 - **3.3** Find all $m \in \mathbb{N}$ such that $2^{2^{m+1}} + 2$ is divisible by 17.
- **Q4** 4.1 Determine whether the congruence $x^2 + 10x 19 \equiv 0 \pmod{101}$ is solvable.
 - **4.2** Determine all the primes p such that $\left(\frac{3}{p}\right) = +1$. (This should be expressed as one or more congruence conditions for p.)
 - **4.3** Let $p \equiv 3 \pmod{4}$ be a prime. Let $a \in \mathbb{Z}$ satisfy $\operatorname{ord}_p(a) = (p-1)/2$. Show that -a is a primitive root modulo p. (*Hint:* Consider separately the cases that $\operatorname{ord}_p(-a)$ is odd and even. Note that (p-1)/2 is the largest positive divisor of p-1, besides p-1 itself; you should prove this.)