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SECTION A

Q1 Let

P =
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(a) Compute all possible stationary distributions for P .

(b) Determine the period of each state.

You must justify your solutions.

Q2 Consider a rook moving uniformly at random from amongst the allowed moves on
the unusually shaped chessboard depicted in Figure 1. If the rook starts on the
square labelled x, what is the expected return time of the rook? You must justify
your solution.

x

Figure 1: The unusually shaped chessboard for problem Q2. A rook can move any positive
number of squares in a straight line (horizontally or vertically). For example, there are
seven possible places to move to from the square labelled x.
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SECTION B

Q3 Let I = Z, the set of all integers. Let P̄ be the stochastic matrix indexed by I with

p̄ij =

{
1
2
|i− j| = 1,

0 else,

and for m = 1, 2, 3 let Q(m) denote the matrices with entries

Q
(1)
ij =

{
1 j = 0,

0 else,
Q

(2)
ij =


1 i odd, j = 0,
1
2

i even, |i− j| = 1,

0 else,

and

Q
(3)
ij =


1 i = 4k + 1 for some k ∈ I, j = 0,
1
2

i 6= 4k + 1 for any k ∈ I, |i− j| = 1,

0 else.

Let P (m) denote the stochastic matrix 1
2
P̄ + 1

2
Q(m).

(a) Is the state 0 recurrent or transient for a Markov chain started at the state 0
and with transition matrix P (1)?

(b) Is the state 0 recurrent or transient for a Markov chain started at the state 0
and with transition matrix P (2)?

(c) Is the state 0 recurrent or transient for a Markov chain started at the state 0
and with transition matrix P (3)?

You must justify your solutions.

Q4 Let I = {1, 2, 3, . . . }. For n ∈ I let an = n−2. In this problem you may take for
granted the fact that

∑∞
n=1 an = π2/6.

(a) Find a transition matrix P indexed by I and a constant c > 0 such that both

(i) pij = 0 if |i− j| > 1 and

(ii) the stationary distribution σ of P satisfies σn = can for all n ∈ I.

(b) Let (Xn)n≥0 be a Markov chain with initial state 1 and a transition matrix P
that satisfies the requirements in part (a). Is this Markov chain recurrent or
transient?

(c) Let A denote the long-run fraction of time that (Xn)n≥0 spends at the state 1.
Compute cos(Aπ3).

You must justify your solutions.
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