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SECTION A

Q1 For a set X with topology 7, define:
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T={AeP(X)| X\ Aer}; P={AeP(X)|A¢rIuU{0 X}

(a) For X = {1,2,3}, 7= {0,{1},{2,3}, X}, write down 7¢ and 7*. Is each of
these a topology on X7 If yes, just state this. If not, explain why not.

(b) For X finite and 7 any topology on X, is 7¢ always a topology on X7
Is 7% always a topology on X? Give a proof or counterexample for each.

(c) For Y infinite and 7 any topology on Y, is 7¢ always a topology on Y?
Is 7% always a topology on Y'? Give a proof or counterexample for each.

(a) Write down definitions for i) the discrete topology and ii) compactness.

(b) Show that if 7 is the discrete topology then the topological space (X, 7) is
compact if and only if X is finite.

(c¢) If 1y C 7o, is it true that (X, ) is compact = (X, 7») is compact?
Is it true that (X, 1) is compact = (X, 71) is compact?
Give a proof or counterexample for each.

(a) State what it means for two topological spaces to be homotopy equivalent.

(b) Consider the lists of upper- and lower-case letters below (in the given font!).

A B C D E
a b c d e

Viewing each letter as a subset of R? equipped with the subspace topology,
partition the upper-case list, the lower-case list and the combined list, re-
spectively, into sets of homotopy-equivalent topological spaces. In particular,
identify any letters from the upper-case list which are not homotopy equiva-
lent to their lower-case counterparts. Briefly justify your answers, including by
making reference to appropriate topological invariants wherever necessary.

(c) Prove that the annulus A = {z € C |1 < |z| < 2} and the circle S* = {z € C |
|z| = 1} are homotopy equivalent but not homeomorphic.

CONTINUED
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Q4 (a) If K and L are finite simplicial complexes, state what it means for a map
f: K — L to be a simplicial map.

(b) Let K be the 2-dimensional finite simplicial complex represented (via the iden-
tification indicated by the arrows on the left- and right-hand sides) by the
diagram below which triangulates the cylinder S' x [0, 1], where the vertices

are labelled vy, ..., vg.
U1 V2 v3 U1
®
(O V4
Us Ue
A A
®
(%rd (U Vg (%rd

Consider now the surjective simplicial map f : K — L determined by

wi, ifie{1,2,3),
f(vl) = Wi—2, ifi e {47 5a 6}a
ws,  if i€ {7,8,9},

where L is a finite simplicial complex with vertices wq, ..., ws.

(i) Sketch the simplicial complex L. State whether L triangulates a closed
surface and, if so, identify that closed surface. Provide a brief justification
for each part of your answer.

(ii)) Compute the fundamental groups 7 (K, v1) and m (L, wy).

(iii) Deduce that the homomorphism f, : m (K, v;) — m(L,w;) induced by f
is surjective, but not an isomorphism.
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SECTION B

Q5 (a) Give a definition of connectedness for a topological space. Let Y = {0, 1} have
the discrete topology. Show that a topological space X is connected if and only
if any continuous function f : X — Y is constant.

(b) In a topological space X, let {U;}ier be a collection of subsets, each U; con-
nected. Suppose that for one of these subsets, Uy, we have U;, NU; # () for all
i € I. Show using part (a) that (J;.; U; is connected.

For x € R, recall that |z is the largest integer < x.
In R? with the standard topology, let A = {(z,y) |y =z — |z]}.

(c¢) Draw a sketch of A. Use your definition to show that it is not connected, and
specify its components.

(d) Define f: R* — R? by (z,y) — (¢ — [x],y|z]).
Sketch the image f(A), and use part (b) to show that it is connected.

(e) Consider the function f, its restriction f|4 to A, and its restriction f|c to some

fixed component C' of A. For each, state whether the function is continuous,
and whether it is a homeomorphism onto its image. (Proofs are not required.)
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Q6 Recall the vector space of quaternions
H=1,i,5,k) ={¢g=a+bi+cj+dk|a,b,cdeR}.
We give H a non-commutative multiplication defined by

extended by the usual distributive laws. Then H \ {0} with this multiplication is a
group. We define

G=a—bi—cj—dk and |q| = Va2 + b+ + d2,

and note the following three facts:

q=ap, |pqgl=1pllgl, and qq=|q*=qq.

[Hint: For this question you do not need to do any co-ordinate-wise multiplication.
Use the three facts instead.]

(a) Show that S® = {q € H | |q| = 1} is a subgroup of H \ {0}.

(b) What is the usual topology on H? Explain briefly why S® with the induced
(subspace) topology is a topological group, and show that it is compact.

For any square matrix of quaternions A = (a;;) € M,(H), we define A* as the
conjugate transpose (that is, the ij" entry of A* is @;;) and note that (AB)* = B*A*.
Let

Sp(n) ={A e M,(H) | AA* =1 = A"A}.

(c) Explain briefly why Sp(1) = S®. What topology should we use on Sp(n) ?
(d) Let ST = {(*) e H? | |g|* + |p|> = 1}. If (?) € ST, with ¢ # 0, then show that

q 4qpq
is an element of Sp(2).

(e) We define a map e: Sp(2) x S” — S7 by (A, (z)) — A(i)
Check that A(}) is indeed in S7.

(f) In fact, e is an action of Sp(2) on S7. Show that this action is transitive.
What is the orbit space S7/Sp(2)?
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Q7 Suppose that X is the connected, two-dimensional, finite simplicial complex given

Q8
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by X = KUL, where K and L are the connected, two-dimensional, finite simplicial
complexes represented by the identification diagrams below and where the intersec-
tion K N L is the 1-dimensional simplicial complex (triangle) common to both K
and L with vertices vy, vy, v3. Note that the vertices of X are labelled by vy, ..., vq1,
and that K and L triangulate the torus and sphere, respectively.

V10

U1 U1

V11

L

(a) Prove or disprove the statement that X is homeomorphic to a closed surface.
Briefly justify any assertions you make.

(b) Compute the Euler characteristic of X, justifying any assertions you make.

(¢) Compute the fundamental group m (X).
[You may assume knowledge of the fundamental group of the circle S* and
of any contractible space, if necessary, but you should present as part of your
answer a calculation of the fundamental group of any other space you use.|

(a) State the Classification Theorem for Closed Surfaces.

(b) Let Y be the surface with boundary obtained by removing the interiors of three
pairwise-disjoint closed discs from a torus 7.

(i) Compute the Euler characteristic of Y.

(ii) A closed surface is constructed by taking 2k copies of the space Y and
identifying pairs of boundary circles in such a way that the final space is
connected and without boundary. For each & € N, how many different
closed surfaces (up to homeomorphism) can be constructed in this way?
Justify your answer, giving explicit descriptions of the surfaces which can
be constructed.
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